Abstract:
Methods are provided for dewaxing a distillate fuel boiling range feed to improve one or more cold flow properties of the distillate fuel feed, such as cloud point, where the distillate fuel feed is fractionated to produce both a jet fuel product and an arctic diesel fuel product. The decrease of cloud point is achieved by using a feedstock having a concentration of nitrogen of less than about 50 wppm and a concentration of sulfur of less than about 15 wppm. Further, the dewaxing catalyst may have a reduced content of hydrogenation metals, such as a content of Pt or Pd of from about 0.05 wt % to about 0.35 wt %. A distillate fuel feed can be dewaxed to achieve a desired cloud point differential using a reduced metals content dewaxing catalyst under the same or similar conditions to those required for a dewaxing catalyst with higher metals content.
Abstract:
This invention provides methods for multi-stage hydroprocessing treatment of FCC naphthas for improving the overall production quantity of naphtha boiling-range materials during naphtha production for low sulfur gasolines. Of particular benefit of the present processes is the selective treating of cat naphthas to remove gums instead of undercutting the overall naphtha pool by lowering the end cutpoints of the cat naphtha fraction. This maximizes the amount of refinery cat naphtha that can be directed to the gasoline blending pool while eliminating existing processing problems in hydrodesulfurization units. The processes disclosed herein have the additional benefit of minimizing octane losses in the increased naphtha pool volume.
Abstract:
This invention provides methods for multi-stage hydroprocessing treatment of FCC naphthas for improving the overall production quantity of naphtha boiling-range materials during naphtha production for low sulfur gasolines. Of particular benefit of the present processes is the selective treating of cat naphthas to remove gums instead of undercutting the overall naphtha pool by lowering the end cutpoints of the cat naphtha fraction. This maximizes the amount of refinery cat naphtha that can be directed to the gasoline blending pool while eliminating existing processing problems in hydrodesulfurization units. The processes disclosed herein have the additional benefit of minimizing octane losses in the increased naphtha pool volume.