Abstract:
A crack-resistant member for preventing crack propagation, a method of preventing crack propagation, and method of assembly a tower are provided. The crack-resistant member includes at least one insert attached to at least one removed portion at a predetermined location along a girth weld and adjacent a heat affected zone of the tower. The at least one insert is positioned perpendicular to a weld direction and intersecting the girth weld. The at least one insert prevents crack propagation in the girth weld of the tower.
Abstract:
A crane system for a wind turbine is disclosed. The crane system includes a support structure, a movable structure, a slidable device, a first actuator unit, and a plurality of second actuator units. The slidable device includes a base, a retention component, and first, second, third, and fourth pairs of clamping arms. The base is coupled to the support structure. The retention component is coupled to either side of the base to define a channel between the retention component and the base. The first and second pairs of clamping arms are spaced apart and coupled to each other and to the base. The third and fourth pairs of clamping arms are disposed within the channel, spaced apart, and coupled to each other. The first actuator unit is coupled to the slidable device and each second actuator unit is coupled to the first, second, third, and fourth pairs of clamping arms.
Abstract:
Systems and methods for monitoring wind turbine loading are provided. In one embodiment, a system includes a main shaft, a bedplate, and a gearbox coupled to the main shaft and mounted to the bedplate. The gearbox includes an outer casing and a torque arm extending from the outer casing. The system further includes an isolation mount coupled to the torque arm, and a sensor configured to measure displacement of the torque arm. In another embodiment, a method includes operating the wind turbine, and detecting displacement of a torque arm of a gearbox of the wind turbine. The method further includes calculating a moment for a main shaft of the wind turbine based on the displacement of the torque arm.
Abstract:
Systems and methods for monitoring wind turbine loading are provided. In one embodiment, a system includes a main shaft, a bedplate, and a gearbox coupled to the main shaft and mounted to the bedplate. The gearbox includes an outer casing and a torque arm extending from the outer casing. The system further includes an isolation mount coupled to the torque arm, and a sensor configured to measure displacement of the torque arm. In another embodiment, a method includes operating the wind turbine, and detecting displacement of a torque arm of a gearbox of the wind turbine. The method further includes calculating a moment for a main shaft of the wind turbine based on the displacement of the torque arm.
Abstract:
A method for operating a gasifier includes detecting a corrosive compound between a combustion chamber defined within the gasifier and an inner wall of a pressure vessel that at least partially surrounds the combustion chamber via a corrosion sensor and increasing the temperature of the inner wall of the pressure vessel to a temperature that is greater than a dew point of the corrosive compound via a heater that at least partially surrounds the pressure vessel. The method may also include adjusting a flow of at least one of a fuel, an oxidant and a diluent to the gasifier in response to the detection of the corrosive compound so as to modify the dew point of the corrosive compound.
Abstract:
A method for operating a gasifier includes detecting a corrosive compound between a combustion chamber defined within the gasifier and an inner wall of a pressure vessel that at least partially surrounds the combustion chamber via a corrosion sensor and increasing the temperature of the inner wall of the pressure vessel to a temperature that is greater than a dew point of the corrosive compound via a heater that at least partially surrounds the pressure vessel. The method may also include adjusting a flow of at least one of a fuel, an oxidant and a diluent to the gasifier in response to the detection of the corrosive compound so as to modify the dew point of the corrosive compound.
Abstract:
An integral ring gear and torque arm for a wind turbine gearbox and method of manufacturing same includes forming the ring gear and the associated gear housing as a single part using the same material, e.g., using a casting process. Further, the ring gear defines an inner circumferential surface having a plurality of gear teeth. Thus, the method also includes applying a coating material to the gear teeth of the ring gear via an additive manufacturing process, such as cold spraying, so as to increase a hardness of gear teeth.
Abstract:
Components and methods of processing such components from precipitation-strengthened alloys so that the components exhibit desirable grain sizes following a supersolvus heat treatment. The method includes consolidating a powder of the alloy to form a billet having an average grain size. The billet is then forged at a temperature below the solvus temperature to form a forging having an average grain size of not coarser than the grain size of the billet. The billet is then forged at a total strain of at least 5%, after which at least a portion of the forging is heat treated at a temperature below the solvus temperature to pin grains within the portion. The entire forging can then be heat treated at a temperature above the solvus temperature of the alloy without coarsening the grains in the portion.
Abstract:
Components and methods of processing such components from precipitation-strengthened alloys so that the components exhibit desirable grain sizes following a supersolvus heat treatment. The method includes consolidating a powder of the alloy to form a billet having an average grain size. The billet is then forged at a temperature below the solvus temperature to form a forging having an average grain size of not coarser than the grain size of the billet. The billet is then forged at a total strain of at least 5%, after which at least a portion of the forging is heat treated at a temperature below the solvus temperature to pin grains within the portion. The entire forging can then be heat treated at a temperature above the solvus temperature of the alloy without coarsening the grains in the portion.
Abstract:
A method of separating a powder mixture is disclosed. A first magnetic field is applied to the powder mixture which may contains a non-magnetic metal powder and a contaminant powder. A field strength of the first magnetic field magnetizes the non-magnetic metal powder and leaves the contaminant powder non-magnetized. A second magnetic field is applied to the powder mixture to separate the magnetized metal powder from the non-magnetized contaminant powder.