Abstract:
A method for estimating pressures at a gas engine using a real-time model-based observer is implemented by a pressure estimation computing device. The method includes receiving a design schema describing an intake manifold and a plurality of components associated with the gas engine, segmenting the design schema into a plurality of segments defining a plurality of sections of the gas engine, defining a fluid dynamics model associated with each of the plurality of segments, defining a plurality of interconnected elements based on the plurality of fluid dynamics models, receiving at least one pressure measurement from at least one of a plurality of sensors associated with each of the sections of the gas engine, estimating a plurality of pressure values at each section of the gas engine, and controlling fuel injection to at least one gas cylinder based on the estimated plurality of pressure values.
Abstract:
A gas engine assembly includes a compressor, a combustion system, a bypass line and a control system. The control system is configured to control gas supply parameters based on a transportation delay value. The transportation delay value corresponds to a delay between a time when a gas supply control mechanism is adjusted and a time that gas having a corresponding adjustment of a gas characteristic is received at a predetermined point downstream from the gas supply control mechanism.
Abstract:
An apparatus includes a DC-link, a voltage converter, a bus voltage controller, and a supervisory controller. The voltage converter is configured to convert a first DC voltage into a second DC voltage based on a command signal and based on an adjustment signal and to supply the second DC voltage to the DC-link. The bus voltage controller is configured to iterate calculation of the adjustment signal to communicate each iterated calculation of the adjustment signal to the voltage converter. The supervisory controller is configured to iterate calculation of the command signal and to communicate each iterated calculation of the command signal to the voltage converter and to the bus voltage controller. A frequency of the bus voltage controller to communicate each iterated calculation of the adjustment signal is higher than a frequency of the supervisory controller to communicate each iterated calculation of the command signal.
Abstract:
An apparatus includes a DC-link, a voltage converter, a bus voltage controller, and a supervisory controller. The voltage converter is configured to convert a first DC voltage into a second DC voltage based on a command signal and based on an adjustment signal and to supply the second DC voltage to the DC-link. The bus voltage controller is configured to iterate calculation of the adjustment signal to communicate each iterated calculation of the adjustment signal to the voltage converter. The supervisory controller is configured to iterate calculation of the command signal and to communicate each iterated calculation of the command signal to the voltage converter and to the bus voltage controller. A frequency of the bus voltage controller to communicate each iterated calculation of the adjustment signal is higher than a frequency of the supervisory controller to communicate each iterated calculation of the command signal.
Abstract:
A method for estimating pressures at a gas engine using a real-time model-based observer is implemented by a pressure estimation computing device. The method includes receiving a design schema describing an intake manifold and a plurality of components associated with the gas engine, segmenting the design schema into a plurality of segments defining a plurality of sections of the gas engine, defining a fluid dynamics model associated with each of the plurality of segments, defining a plurality of interconnected elements based on the plurality of fluid dynamics models, receiving at least one pressure measurement from at least one of a plurality of sensors associated with each of the sections of the gas engine, estimating a plurality of pressure values at each section of the gas engine, and controlling fuel injection to at least one gas cylinder based on the estimated plurality of pressure values.
Abstract:
In one embodiment, a method includes receiving, via a first sensor, a signal representative of at least one of a manifold pressure, a manifold temperature, or a manifold mass flow rate of a manifold. The method further includes deriving, via a manifold model and the first sensor signal, a gas concentration measurement at a first manifold section of the manifold. The method additionally includes applying the gas concentration measurement during operations of an engine, wherein the manifold is fluidly coupled to the engine.
Abstract:
A method for detecting errors in a sensor at a gas cylinder is implemented by a pressure estimation computing device including a processor and a memory device coupled to the processor. The method includes receiving a first pressure measurement from a first sensor associated with a gas cylinder, receiving a design schema describing an intake manifold, the intake manifold included within the gas engine, segmenting the design schema into a plurality of segments, defining a fluid dynamics model associated with each of the plurality of segments, defining a plurality of interconnected 2-port elements based on the plurality of fluid dynamics models, estimating a second pressure measurement for the gas cylinder based on the plurality of interconnected 2-port elements, comparing the first pressure measurement to the second pressure measurement, and determining that the first sensor is in an anomalous state.
Abstract:
In one embodiment, a method includes receiving, via a first sensor, a signal representative of at least one of a manifold pressure, a manifold temperature, or a manifold mass flow rate of a manifold. The method further includes deriving, via a manifold model and the first sensor signal, a gas concentration measurement at a first manifold section of the manifold. The method additionally includes applying the gas concentration measurement during operations of an engine, wherein the manifold is fluidly coupled to the engine.
Abstract:
A gas engine assembly includes a compressor, a combustion system, a bypass line and a control system. The control system is configured to control gas supply parameters based on a transportation delay value. The transportation delay value corresponds to a delay between a time when a gas supply control mechanism is adjusted and a time that gas having a corresponding adjustment of a gas characteristic is received at a predetermined point downstream from the gas supply control mechanism.