Abstract:
A gas engine assembly includes a compressor, a combustion system, a bypass line and a control system. The control system is configured to control gas supply parameters based on a transportation delay value. The transportation delay value corresponds to a delay between a time when a gas supply control mechanism is adjusted and a time that gas having a corresponding adjustment of a gas characteristic is received at a predetermined point downstream from the gas supply control mechanism.
Abstract:
A system includes a controller that has a processor configured to receive a first signal from a first oxygen sensor indicative of a first oxygen measurement, wherein the first oxygen sensor is disposed upstream of a catalytic converter system; and to receive a second signal from a second oxygen sensor indicative of a second oxygen measurement, wherein the second oxygen sensor is disposed downstream of the catalytic converter system; and to execute a catalyst estimator system, wherein the catalyst estimator system is configured to derive an oxygen storage estimate based on the first signal, the second signal, and a catalytic converter model. The processor is configured to derive a system oxygen storage setpoint for the catalytic converter system based on the catalytic converter model and the oxygen storage estimate.
Abstract:
A system includes a controller that has a processor. The processor is configured to receive a first signal from a first oxygen sensor indicative of a first oxygen measurement and a second signal from a second oxygen sensor indicative of a second oxygen measurement. The first oxygen sensor is disposed upstream of a catalytic converter system and the second oxygen sensor is disposed downstream of the catalytic converter system. The processor is also configured to derive a plurality of oxygen storage estimates based on the first signal, the second signal, and a catalytic converter model. Each of the plurality of oxygen storage estimates represents an oxygen storage estimate for a corresponding cell of a plurality of cells in the catalytic converter system. Further, the processor is configured to derive a system oxygen storage estimate for the catalytic converter system based on the plurality of oxygen storage estimates. The processor is also configured to derive a system oxygen storage setpoint for the catalytic converter system based on the catalytic converter model. The processor is then configured to compare the system oxygen storage estimate to the system oxygen storage setpoint and apply the comparison during control of a gas engine.
Abstract:
A system includes an engine comprising an EGR valve that recirculates a portion of exhaust gas, a data repository that stores a first look up and one or more engine operational parameters, an engine control unit operationally coupled to the engine and the data repository, wherein the engine control unit is configured to: determine a desired EGR flow rate reference of the portion of the exhaust gas based on the one or more engine operational parameters and the first look up table, determine a current estimated EGR flow rate based on the one or more engine operational parameters, determine a designated corrected EGR flow rate reference based on the desired EGR flow rate reference and a delta EGR flow rate, determine EGR flow rate error, and determine a percentage opening of the EGR valve based at least on the EGR flow rate error.
Abstract:
In one embodiment, a method includes receiving, via a first sensor, a signal representative of at least one of a manifold pressure, a manifold temperature, or a manifold mass flow rate of a manifold. The method further includes deriving, via a manifold model and the first sensor signal, a gas concentration measurement at a first manifold section of the manifold. The method additionally includes applying the gas concentration measurement during operations of an engine, wherein the manifold is fluidly coupled to the engine.
Abstract:
In one embodiment, a method includes receiving, via a first sensor, a signal representative of at least one of a manifold pressure, a manifold temperature, or a manifold mass flow rate of a manifold. The method further includes deriving, via a manifold model and the first sensor signal, a gas concentration measurement at a first manifold section of the manifold. The method additionally includes applying the gas concentration measurement during operations of an engine, wherein the manifold is fluidly coupled to the engine.
Abstract:
A system includes an engine comprising an EGR valve that recirculates a portion of exhaust gas, a data repository that stores a first look up and one or more engine operational parameters, an engine control unit operationally coupled to the engine and the data repository, wherein the engine control unit is configured to: determine a desired EGR flow rate reference of the portion of the exhaust gas based on the one or more engine operational parameters and the first look up table, determine a current estimated EGR flow rate based on the one or more engine operational parameters, determine a designated corrected EGR flow rate reference based on the desired EGR flow rate reference and a delta EGR flow rate, determine EGR flow rate error, and determine a percentage opening of the EGR valve based at least on the EGR flow rate error.
Abstract:
A system includes a controller that has a processor configured to receive a first signal from a first oxygen sensor indicative of a first oxygen measurement, wherein the first oxygen sensor is disposed upstream of a catalytic converter system; and to receive a second signal from a second oxygen sensor indicative of a second oxygen measurement, wherein the second oxygen sensor is disposed downstream of the catalytic converter system; and to execute a catalyst estimator system, wherein the catalyst estimator system is configured to derive an oxygen storage estimate based on the first signal, the second signal, and a catalytic converter model. The processor is configured to derive a system oxygen storage setpoint for the catalytic converter system based on the catalytic converter model and the oxygen storage estimate.
Abstract:
A gas engine assembly includes a compressor, a combustion system, a bypass line and a control system. The control system is configured to control gas supply parameters based on a transportation delay value. The transportation delay value corresponds to a delay between a time when a gas supply control mechanism is adjusted and a time that gas having a corresponding adjustment of a gas characteristic is received at a predetermined point downstream from the gas supply control mechanism.