Abstract:
A system includes a light emitting unit, a front mirror, a rear mirror, an imaging unit and a processor. The light emitting unit is configured to emit a collimated light beam. The front mirror is configured to reflect part of the collimated light beam to produce and project a front focused ring of structured light to an object to obtain a front reflected ring of light, and configured to allow part of the collimated light beam to pass by. The rear mirror is positioned downstream of a light transmitting path of the front mirror. The rear mirror is configured to reflect at least part of the collimated light beam passing by the front mirror to produce and project a rear focused ring of the structured light to the object to obtain a rear reflected ring of light.
Abstract:
The present application provides for feeler gauges. The feeler gauges include a plurality of elongate measuring leaves rotatably coupled on a common axis of rotation with an elongate housing. The leaves may be manually, selectively rotatable between a “home” position wherein the leaves are substantially aligned with the housing and an “extended” position wherein the leaves are spaced from the housing. The leaves may be relatively flexible and substantially flat such that they define a substantially constant thickness. One or more extended leaves may be used to measure the thickness of a clearance or gap. The gauges may be configured to detect, determine or measure the thickness of the leaves that are in the “home” position and/or the “extended” position, and thereby determine the total thickness of a clearance or gap measured by the extended leaves.