Abstract:
A cleaning method and a cleaning fluid are provided. The cleaning method includes accessing a plurality of turbine components attached to a turbine assembly, the turbine assembly being a portion of a turbomachine, positioning at least one cleaning vessel over at least one of the turbine components, forming a liquid seal with a sealing bladder, providing a cleaning fluid to the cleaning vessel, and draining the cleaning fluid from the cleaning vessel. The cleaning fluid includes a carrier fluid and a solvent additive for removing fouling material from the turbine component. An alternative cleaning method is also provided.
Abstract:
A coating method, coated article and coating are provided. The coated article includes a low temperature component, and a graphene coating formed from a graphene derivative applied over the low temperature component. The coating method includes providing a graphene derivative, providing a low temperature component, applying the graphene derivative over the low temperature component, and forming a graphene coating. The graphene coating reduces corrosion and fouling of the low temperature component. The coating includes a graphene derivative, and modified functional groups on the graphene derivative. The modified functional groups increase adherence of the coating on application to a low temperature component.
Abstract:
A cleaning method and a cleaning fluid are provided. The cleaning method includes accessing a plurality of turbine components attached to a turbine assembly, the turbine assembly being a portion of a turbomachine, positioning at least one cleaning vessel over at least one of the turbine components, forming a liquid seal with a sealing bladder, providing a cleaning fluid to the cleaning vessel, and draining the cleaning fluid from the cleaning vessel. The cleaning fluid includes a carrier fluid and a solvent additive for removing fouling material from the turbine component. An alternative cleaning method is also provided.
Abstract:
A coated article and a method for producing a coating are disclosed. Producing the coating includes providing a substrate defining a substrate surface having a substrate erosion resistance and applying a matrix and ceramic particles to the substrate surface. The matrix includes an anodic material having an anodic erosion resistance. The ceramic particles include a first ceramic having a first ceramic erosion resistance and a second ceramic having a second ceramic erosion resistance. The first ceramic erosion resistance is greater than the second ceramic erosion resistance, greater than the anodic erosion resistance, and greater than the substrate erosion resistance. The second ceramic interacts inchoately with the anodic material during the applying to form modified ceramic particles and modified anodic material formations. The modified ceramic particles are capable of forming a passive oxide film. The coated article includes the substrate and the coating on the substrate surface.