Abstract:
A coating method and a coated article are disclosed. Forming a coating includes providing a substrate having a substrate surface, forming on the substrate surface at least one bond coating layer defining a bond coating surface, and forming on the bond coating surface at least one oxide coating layer defining an oxide coating surface. A coated article includes a substrate having the coating formed thereupon. The oxide coating layer is more resistive to increasing the oxide coating surface roughness (Ra) than either the bond coating layer is resistive to increasing the bond coating surface roughness (Ra) or the substrate is resistive to increasing the substrate surface roughness (Ra).
Abstract:
A coated article and a method for producing a coating are disclosed. The method for producing a coating includes providing an iron-based alloy substrate, and depositing a protective coating over a surface of the iron-based alloy substrate. The protective coating includes a cobalt-chromium-based coating material having at least one anodic element distributed therein. The at least one anodic element being anodic to the iron-based alloy substrate. Another method for producing a coating includes providing an iron-based alloy substrate, depositing an underlayer including at least one anodic element over a surface of the iron-based alloy substrate, and depositing a top coat including a cobalt-chromium-based coating material over the underlayer. The at least one anodic element being anodic to the iron-based alloy substrate. The coated article includes a protective coating having at least one anodic element distributed therein deposited over a surface of an iron-based alloy substrate.
Abstract:
A thermal barrier coating system for metal components in a gas turbine engine having an ultra low thermal conductivity and high erosion resistance, comprising an oxidation-resistant bond coat formed from an aluminum rich material such as MCrAlY and a thermal insulating ceramic layer over the bond coat comprising a zirconium or hafnium oxide lattice structure (ZrO2 or HfO2) and an oxide stabilizer compound comprising one or more of the compounds ytterbium oxide (Yb2O3), yttria oxide (Y2O3), hafnium oxide (HfO2), lanthanum Oxide (La2O3), tantalum oxide (Ta2O5) or zirconium oxide (ZrO2). The invention includes a new method of forming the ceramic-based thermal barrier coatings using a liquid-based suspension containing microparticles comprised of at least one of the above compounds ranging in size between about 0.1 and 5 microns. The coatings form a tortuous path of ceramic interfaces that increase the coating toughness while preserving the ultra low thermal conductivity.
Abstract translation:一种用于具有超低热导率和高耐侵蚀性的燃气轮机中的金属部件的隔热涂层系统,包括由富铝材料如MCrAlY形成的抗氧化粘合涂层和粘结涂层上的绝热陶瓷层 包括锆或铪氧化物晶格结构(ZrO 2或HfO 2)和包含一种或多种化合物氧化镱(Yb 2 O 3),氧化钇(Y 2 O 3),氧化铪(HfO 2),氧化镧(La 2 O 3),钽 氧化物(Ta2O5)或氧化锆(ZrO2)。 本发明包括使用包含由至少一种上述化合物构成的微粒的液体基悬浮液形成陶瓷基热障涂层的新方法,其尺寸范围为约0.1至5微米。 涂层形成陶瓷界面的曲折路径,从而提高涂层韧性,同时保持超低热导率。
Abstract:
A plated component and a plating process are disclosed. The plating process includes applying a material to a region of a component, the material being selected from the group consisting of nickel, cobalt, chromium, iron, aluminum, or a combination thereof. The region includes a single crystal microstructure, includes a directionally solidified microstructure, is substantially devoid of equiaxed microstructure, or a combination thereof. The applying includes electroplating, electroless plating, or the electroplating and the electroless plating. The plated component includes an electroplated region, an intermediate layer on the electroplated region, and an overlay coating on the intermediate layer.
Abstract:
A corrosion monitoring system includes at least one corrosion sensor. The corrosion sensor includes a metallic plug having at least one opening, at least one ceramic sheath in the opening of the metallic plug, and a plurality of probes. Each probe has a central portion with a predetermined cross sectional area extending from the metallic plug. The ceramic sheath electrically isolates each first end and each second end of the probes from the metallic plug and the other first ends and second ends. The probes are sized to provide a distribution of predetermined cross sectional areas of the central portions. The corrosion monitoring system also includes a resistance meter measuring an ohmic resistance for at least one of the probes and a computer determining a corrosion rate by correlating a rate of change of the ohmic resistance to the corrosion rate of the probe.
Abstract:
A gas turbine process includes supplying a fuel to a gas turbine, combusting the fuel in the gas turbine with a hot gas path temperature reaching at least 1100° C. during operation of the gas turbine, and supplying an inhibition composition including at least one yttrium-containing inorganic compound to interact with the vanadium and inhibit vanadium hot corrosion in the gas turbine caused by vanadium as a fuel impurity in the fuel. A process includes supplying an inhibition composition including at least one yttrium-containing inorganic compound to a hot gas path or a combustor of a gas turbine. A fuel composition includes a fuel including at least one fuel impurity including vanadium and an inhibition composition including at least one yttrium-containing compound. An atomic ratio of yttrium to vanadium in the fuel composition is in a range of 1 to 1.5.
Abstract:
A coating, a coating system, and a coating method are provided. The coating includes between about 0.25-35% filler particles embedded in a chrome phosphate binder matrix comprising a balance of the coating by volume. The filler particles have a size in the range from nanosize to six microns with an aspect ratio of from 1:1 to 3:1, and include up to 100% by weight lubricious particles with a balance hard particles. The lubricious particles are selected from the group consisting of boron nitride (BN), titanium nitride (TiN), titanium oxide (TiO2), zinc (Zn), tin (Sn), oxides of zinc and tin, and combinations thereof. The hard particles are selected from the group consisting of chromium carbide (CrC), tungsten carbide (WC), silicon (Si), aluminum (Al), oxides or nitrides of silicon and aluminum, and combinations thereof. A green slurry coating includes an evaporable solvent mixed with the filler particles and chrome phosphate binder matrix.
Abstract:
A system includes a turbine combustor and one or more supply circuits configured to supply one or more fluids to the turbine combustor. The one or more supply circuits include at least a liquid fuel supply circuit fluidly coupled to a liquid fuel source and configured to supply a liquid fuel from the liquid fuel source to the turbine combustor. The system also includes a corrosion inhibitor injection system including a magnesium source storing a magnesium-based inhibitor that includes magnesium oxide (MgO) and an yttrium source storing an yttrium-based inhibitor that includes yttrium oxide (Y2O3). The corrosion inhibitor injection system is fluidly coupled to the turbine combustor and the one or more supply circuits, and is configured to inject the magnesium-based inhibitor and the yttrium-based inhibitor as vanadium corrosion inhibitors into the turbine combustor or the one or more supply circuits.
Abstract:
A coated article and a method for producing a coating are disclosed. Producing the coating includes providing a substrate defining a substrate surface having a substrate erosion resistance and applying a matrix and ceramic particles to the substrate surface. The matrix includes an anodic material having an anodic erosion resistance. The ceramic particles include a first ceramic having a first ceramic erosion resistance and a second ceramic having a second ceramic erosion resistance. The first ceramic erosion resistance is greater than the second ceramic erosion resistance, greater than the anodic erosion resistance, and greater than the substrate erosion resistance. The second ceramic interacts inchoately with the anodic material during the applying to form modified ceramic particles and modified anodic material formations. The modified ceramic particles are capable of forming a passive oxide film. The coated article includes the substrate and the coating on the substrate surface.
Abstract:
A process of forming a calcium-magnesium-aluminosilicate (CMAS) penetration resistant coating, and a CMAS penetration resistant coating are disclosed. The process includes providing a thermal barrier coating having a dopant, and exposing the thermal barrier coating to calcium-magnesium-aluminosilicate and gas turbine operating conditions. The exposing forming a calcium-magnesium-aluminosilicate penetration resistant layer. The coating includes a thermal barrier coating composition comprising a dopant selected from the group consisting of rare earth elements, non-rare earth element solutes, and combinations thereof. Additional or alternatively, the coating includes a thermal barrier coating and an impermeable barrier layer or a washable sacrificial layer positioned on an outer surface of the thermal barrier coating.