Abstract:
A method for profile machining comprises: providing an electrode having an electrode axis, a free axial end with an end face, and a peripheral surface other than the end face; energizing the electrode and a workpiece having a thickness, with one of the workpiece and the electrode as an anode and the other as a cathode; and machining the workpiece with the peripheral surface of the electrode, during which the peripheral surface and the electrode axis of the electrode are across the workpiece in a thickness direction thereof. In addition, an embodiment of present invention relates to a component machined by the method.
Abstract:
An apparatus for electrically machining including a rotatable shaft and an electrode for electrically machining is disclosed. The electrode is movably connected to the rotatable shaft. When the rotatable shaft is rotated, the electrode rotates together with the rotatable shaft and moves relative to the rotatable shaft under an action of centrifugal force. Further disclosed is a method for electrically machining including: movably connecting an electrode to a rotatable shaft; inserting the rotatable shaft into a hole in a workpiece, and keeping a gap between the electrode and the workpiece, wherein the hole has a first diameter; powering on the electrode and the workpiece; rotating the rotatable shaft in the hole to generate centrifugal force; and pushing the electrode relative to the rotatable shaft towards the workpiece under an action of the centrifugal force to remove a portion of a material of the hole.
Abstract:
An apparatus includes an electrode assembly comprising a carriage having a plurality of electrode holders, the electrode holders being respectively configured to detachably receive a plurality of electrodes, the electrodes include a plurality of first electrodes and a plurality of second electrodes. The first electrodes are configured for rough machining a workpiece by electric discharging or wire electric discharging to remove material from the workpiece, the second electrodes are configured for finish machining the rough machined workpiece by electric discharging to remove material from the rough machined workpiece.
Abstract:
A method for manufacturing a rotary article comprises: providing a cold metal transfer welding apparatus comprising a welding torch; providing a rotary substrate; providing a digital representation of the rotary article having at least one internal flow passage; defining a welding path on the rotary substrate based on the digital representation; rotating the rotary substrate while depositing a filler metal layer by layer on the welding path of the rotary substrate to form the rotary article; and separating the rotary substrate from the rotary article.
Abstract:
A machining system for electromachining a workpiece that in one embodiment includes a machine tool, a cutting tool for performing the eletromachining, and a tool holding apparatus for conductively holding the cutting tool and coupled to the machine tool. The tool holding apparatus includes a holding element for holding the cutting tool and at least one solution releasing element. The solution releasing element is used to receive machining solution and release the machining solution onto a predetermined area of the cutting tool through at least one group of channels. Each group of channels includes at least two channels configured to respectively release the machining solution onto at least two adjacent sections in the predetermined area of the cutting tool.