Abstract:
Systems and methods for operating a wind farm are disclosed. The method includes detecting an operating condition of an upwind wind generator, the upwind wind generator located upstream of a downwind wind generator relative to a wind flow direction. The method further includes communicating a control signal to the downwind wind generator. The control signal is based on the operating condition. The method further includes beginning to adjust the downwind wind generator according to the control signal before the wind flow is experienced by the downwind wind generator.
Abstract:
Joints for connecting a first blade segment to a second blade segment of a wind turbine rotor blade include a first bolt comprising a first proximal end connected to the first blade segment and a first distal end connected to the second blade segment, a second bolt comprising a second proximal end connected to the first blade segment and a second distal end connected to the second blade segment, and a third bolt comprising a third proximal end connected to the first blade segment and a third distal end connected to the third blade segment. At least two of the first bolt, the second bolt and the third bolt differ in size, and a first distance between the first bolt and the second bolt is different than a second distance between the second bolt and the third bolt.
Abstract:
The present invention is directed to a rotor blade assembly for a wind turbine. The rotor blade assembly includes a rotor blade extending from a blade root to a blade tip. The rotor blade has a pressure side surface and a suction side surface. The pressure side surface and the suction side surface each extend between a leading edge and a trailing edge. The assembly also includes a blade root extension configured to attach to one of the pressure side surface or the suction side surface of the rotor blade adjacent to the blade root. The blade root extension includes at least one blade fence and at least one airflow modifying element. The blade fence extends between a proximal end and a distal end in a chord-wise direction. The proximal end is configured to attach to the rotor blade such that the distal end remains free and spaced apart from the rotor blade. The airflow modifying element is configured at the proximal end of the blade fence. As such, the blade root extension is configured to improve aerodynamic performance of the rotor blade.
Abstract:
The present invention is directed to a rotor blade assembly for a wind turbine. The rotor blade assembly includes a rotor blade extending from a blade root to a blade tip. The rotor blade has a pressure side surface and a suction side surface. The pressure side surface and the suction side surface each extend between a leading edge and a trailing edge. The assembly also includes a blade root extension configured to attach to one of the pressure side surface or the suction side surface of the rotor blade adjacent to the blade root. The blade root extension includes at least one blade fence and at least one airflow modifying element. The blade fence extends between a proximal end and a distal end in a chord-wise direction. The proximal end is configured to attach to the rotor blade such that the distal end remains free and spaced apart from the rotor blade. The airflow modifying element is configured at the proximal end of the blade fence. As such, the blade root extension is configured to improve aerodynamic performance of the rotor blade.
Abstract:
Systems and methods for operating a wind farm are disclosed. The method includes detecting an operating condition of an upwind wind generator, the upwind wind generator located upstream of a downwind wind generator relative to a wind flow direction. The method further includes communicating a control signal to the downwind wind generator. The control signal is based on the operating condition. The method further includes beginning to adjust the downwind wind generator according to the control signal before the wind flow is experienced by the downwind wind generator.