Abstract:
The present disclosure is directed to a method for manufacturing a blade component for a rotor blade of a wind turbine. The method includes arranging a fiber material in a mold of the blade component. The method also includes placing at least one pre-cured laminate material atop the fiber material. Another step includes infusing the fiber material and the pre-cured laminate material together via a resin material so as to form the blade component. The method also includes allowing the blade component to cure, the pre-cured laminate material forming at least a portion of an outer surface of the blade component.
Abstract:
A rotor blade for a wind turbine may generally include a first blade component formed from a first fiber-reinforced composite including a first thermoplastic resin material and a second blade component configured to be coupled to the first blade component at a joint interface. The second blade component may be formed from a second fiber-reinforced composite including a second thermoplastic resin material. The second fiber-reinforced composite may include a low fiber region and a high fiber region, with the low fiber region having a fiber-weight fraction that is less than a fiber-weight fraction of the high fiber region. In addition, the first thermoplastic resin material of the first fiber-reinforced composite may be welded to the second thermoplastic resin material contained within the low fiber region of the second thermoplastic composite to form a welded joint at the joint interface between the first blade component and the second blade component.
Abstract:
The present disclosure is directed to thermoplastic airflow modifying elements for a rotor blade for a wind turbine and methods of assembling same. The rotor blade may be constructed from at least one of a thermoset material or a thermoplastic material. Further, the rotor blade includes a blade shell defining an outer surface. Moreover, the rotor blade includes one or more layers of thermoplastic material infused to the outer surface of the blade shell so as to define one or more attachment locations. In addition, the rotor blade includes at least one airflow modifying element constructed, at least in part, from a thermoplastic material. Thus, the airflow modifying element(s) is welded to one of the attachment locations on the outer surface of the blade shell.
Abstract:
Rotor blades and methods for joining blade components of rotor blades are provided. A method includes positioning an insert between and in contact with a first blade component and a second blade component. At least one of the first blade component or the second blade component includes a thermoplastic resin. The insert includes a thermoplastic resin and an energy absorptive pigment. The method further includes heating the thermoplastic resin of the at least one of the first blade component or the second blade component and the thermoplastic resin of the insert. The method further includes cooling the thermoplastic resin of the at least one of the first blade component or the second blade component and the thermoplastic resin of the insert. The heating step and the cooling step join the first blade component, the second blade component and the insert together.
Abstract:
The present disclosure is directed to a method of assembly of a rotor blade for a wind turbine. The method includes placing a first rotor blade section onto a first set location of an assembly fixture, wherein the first rotor blade includes a first locating datum such that the assembly fixture at the first set location constrains movement of the first rotor blade section at the first locating datum along a first direction; placing the first rotor blade section onto a second set location of the assembly fixture, wherein the first rotor blade includes a second locating datum such that the assembly fixture at the second set location constrains movement of the first rotor blade section at the second locating datum along a second direction; and positioning a second rotor blade section onto the first rotor blade section within the assembly fixture.
Abstract:
The present disclosure is directed methods for modifying molds of rotor blades of a wind turbine. In certain embodiments, the blade mold is constructed, at least in part, of a thermoplastic material optionally reinforced with a fiber material. In one embodiment, the method includes identifying at least one blade mold addition for the mold of the rotor blade and positioning the blade mold addition at a predetermined location of the mold of the rotor blade. Further, the blade mold addition is constructed, at least in part, of a thermoplastic material. Thus, the method includes applying at least one of heat, pressure, or one or more chemicals at an interface of the blade mold addition and the mold so as to join the blade mold addition to the mold. In further embodiments, the methods described herein are also directed repairing thermoplastic blade molds.
Abstract:
Methods for assembling rotor blades are provided. A method includes receiving a first portion of a rotor blade at an erection site. The method further includes receiving a second portion of the rotor blade at the erection site. The method further includes aligning the first portion and the second portion at the erection site, the first portion and the second portion supported on a fixture system when aligned. The method further includes connecting a blade component of the first portion and a blade component of the second portion together at the erection site.
Abstract:
Systems and methods for joining blade components of a rotor blade are provided. A method includes positioning a first blade component and a second blade component such that a joint location of the first blade component and a joint location of the second blade component are proximate each other. The method further includes applying a force to an outer surface of the second blade component and an opposing force to an inner surface of the second blade component. The force and opposing force maintain an aerodynamic contour of the second blade component. The method further includes connecting the joint location of the first blade component and the joint location of the second blade component together.
Abstract:
The present disclosure is directed to a modular rotor blade constructed of thermoset and/or thermoplastic materials for a wind turbine and methods of assembling same. The rotor blade includes a pre-formed main blade structure constructed, at least in part, from a thermoset material. The rotor blade also includes at least one blade segment configured with the main blade structure. The blade segment(s) is constructed, at least in part, of a thermoplastic material reinforced with at least one fiber material.
Abstract:
The present disclosure is directed a method for repairing a rotor blade of a wind turbine. More specifically, in certain embodiments, the rotor blade may be constructed, at least in part, of a thermoplastic material reinforced with at least one fiber material. Thus, the method includes identifying at least one defect on the rotor blade. For example, in certain embodiments, the defect(s) as described herein may include a crack, creep, void, hole, distortion, deformation, scratch, or any other blade defect. The method also includes applying at least one of heat, pressure, and/or one or more chemicals to the defect(s) for a predetermined time period until the defect is repaired.