Abstract:
A system and method are provided for reducing vibrations and loads in one or more rotor blades on a rotor hub of a wind turbine when the rotor hub is in a locked or idling condition. A mass damper is attached at a fixed location on one or more of the rotor blades and is maintained on the rotor blades during the locked or idling condition of the rotor hub. The mass damper includes a movable mass component that is responsive to changes in the vibrations or oscillations induced in the rotor blades during the locked or idling condition of the rotor hub.
Abstract:
Provided is a Coriolis flow sensor assembly that includes a fluid flow assembly, including a flow tube, wherein the fluid flow assembly is configured to provide a flow path through the flow tube. The flow tube has at least one region of increased stiffness, which may be a result of a structural support component coupled to the flow tube. In another embodiment, the increased stiffness is caused by integral properties of the flow tube.
Abstract:
Provided is a Coriolis flow sensor assembly that includes a flow tube configured to provide a flow path through the flow tube. Further, the Coriolis flow sensor assembly includes a mechanical drive assembly configured to drive an oscillation of the flow tube while fluid is flowing via an oscillation surface. The Coriolis flow sensor assembly includes an interface fixedly coupled to the oscillation surface of the mechanical drive assembly and configured to receive the flow tube.
Abstract:
A synthetic jet includes a first backer structure, one and only one actuator, a wall member coupled to and positioned between the first backer structure and the one and only one actuator to form a cavity, and wherein the wall member has an orifice formed therethrough, and wherein the orifice fluidically couples the cavity to an environment external to the cavity.
Abstract:
A cooling system includes a synthetic jet having a first synthetic jet lead and a second synthetic jet lead. The cooling system also includes a capacitor having a first capacitor lead and a second capacitor lead. The first capacitor lead is coupled to the first synthetic jet lead. The synthetic jet is configured to be powered via an alternating current (AC) power source coupled to the second capacitor lead and to the second synthetic jet lead.
Abstract:
A system comprising that includes a flow tube configured to provide a flow path through the flow tube. The system also includes a plurality of actuators distributed radially about the flow tube, wherein a first actuator of the plurality of actuators is configured to drive a first oscillation in a first plane and a second actuator of the plurality of actuators is configured to drive a second oscillation in a second plane. Further, the system includes a plurality of sensor sets disposed on the flow tube, wherein each sensor set comprises two or more sensors configured to sense the first oscillation, the second oscillation, or both.
Abstract:
A synthetic jet includes a first backer structure and a first actuator coupled to the first backer structure to form a first composite unit. The synthetic jet also includes a second backer structure, and a second actuator coupled to the second backer structure to form a second composite unit. A wall member is coupled to and positioned between the first and second backer structures to form a cavity. The first composite unit has an orifice formed therethrough and the orifice is fluidically coupled to the cavity and fluidically coupled to an environment external to the cavity.
Abstract:
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Abstract:
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Abstract:
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.