Abstract:
Methods for forming a dummy metal structure between dies on a semiconductor wafer and the resulting devices are disclosed. Embodiments may include forming metal interconnection layers extending from a substrate of a semiconductor wafer to a top metal interconnection layer of the semiconductor wafer between a plurality of die regions, each of the metal interconnection layers including a plurality of dummy vertical interconnect accesses (VIAs) and a plurality of dummy metal lines, with the plurality of dummy metal lines laterally connecting the plurality of dummy VIAs within each respective metal interconnection layer, and a plurality of dummy VIAs within a first metal interconnection layer vertically connecting a plurality of dummy metal lines within the first metal interconnection layer to a plurality of dummy metal lines within a second metal interconnection layer, and the second metal interconnection layer being below the first metal interconnection layer.
Abstract:
A methodology and circuitry enabling detection of smaller and early stages of failures in under-fill layers in IC chip assemblies are disclosed. Embodiments include providing a top plate having an upper surface and a lower surface, the lower surface bonded by a bonding material layer to an upper surface of a bottom plate; forming transmitter and receiver asymmetric coupling capacitors between the top plate and the bottom plate; forming a transmission line in the bottom plate connecting elements of the transmitter and receiver asymmetric coupling capacitors in the bottom plate; and detecting a failure in the bonding material layer based, at least in part, on electrical characteristics associated with the transmitter asymmetric coupling capacitor, the receiver asymmetric coupling capacitor, the transmission line or a combination thereof.
Abstract:
Methods of testing TSVs using eFuse cells prior to and post bonding wafers in a 3D IC stack are provided. Embodiments include providing a wafer of a 3D IC stack, the wafer having thin and thick metal layers; forming first and second TSVs on the wafer, the first and second TSVs laterally separated; forming an eFuse cell between and separated from the first and second TSVs; forming a FF adjacent to the second TSV and on an opposite side of the second TSV from the eFuse cell; connecting the first TSV, the eFuse cell, the second TSV, and the FF in series in an electric circuit; and testing the first and second TSVs prior to bonding the wafer to a subsequent wafer in the 3D IC stack.
Abstract:
Methods for forming a dummy metal structure between dies on a semiconductor wafer and the resulting devices are disclosed. Embodiments may include forming metal interconnection layers extending from a substrate of a semiconductor wafer to a top metal interconnection layer of the semiconductor wafer between a plurality of die regions, each of the metal interconnection layers including a plurality of dummy vertical interconnect accesses (VIAs) and a plurality of dummy metal lines, with the plurality of dummy metal lines laterally connecting the plurality of dummy VIAs within each respective metal interconnection layer, and a plurality of dummy VIAs within a first metal interconnection layer vertically connecting a plurality of dummy metal lines within the first metal interconnection layer to a plurality of dummy metal lines within a second metal interconnection layer, and the second metal interconnection layer being below the first metal interconnection layer.