Hybrid bulk capacitance circuit for AC input AC/DC switching mode power supplies

    公开(公告)号:US11431261B2

    公开(公告)日:2022-08-30

    申请号:US17230390

    申请日:2021-04-14

    Abstract: A bulk capacitor circuit for an AC input AC/DC Switching Mode Power Supply, such as an AC/DC adapter/charger without active power factor correction, is provided, comprising a plurality of bulk capacitors having different voltage ratings, and driver and control circuitry comprising AC input voltage sensing and comparator circuitry, which enables selective connection of one or more of the plurality of bulk capacitors, responsive to a sensed AC input voltage range. A startup circuit provides power to the driver circuit initially, so that the AC input voltage can be determined before power-up and enabling of the DC/DC converter. This solution provides for a reduction in capacitor volume, with associated improvement in the power density of an isolated AC/DC power supply, while the startup circuit ensures that an appropriate bulk capacitance is connected at startup for low line AC input, to maintain the ripple voltage in an appropriate range for reliable operation.

    Architecture for multi-port AC/DC switching mode power supply

    公开(公告)号:US11705821B2

    公开(公告)日:2023-07-18

    申请号:US17881203

    申请日:2022-08-04

    CPC classification number: H02M3/33576 H02M1/0009 H02M1/4208 H02M3/158

    Abstract: An architecture for a multi-port AC/DC Switching Mode Power Supply (SMPS) with Power Factor Correction (PFC) comprises power management control (PMC) for PFC On/Off Control and Smart Power Distribution, and optionally, a boost follower circuit. For example, in a universal AC/DC multi-port USB-C Power Delivery (PD) adapter, PMC enables turn-on and turn-off of PFC dependent on output port operational status and a combined load of active output ports. A microprocessor control unit (MCU) receives operational status, a voltage sense input and a current sense input for each USB port, computes output power for each USB port, and executes a power distribution protocol to turn-on or turn-off PFC dependent on the combined load from each USB port. Available power may be distributed intelligently to one or more ports, dependent on load. In an example embodiment, turning-off PFC for low load and low AC line input increases efficiency by 3% to 5%.

    High accuracy current sensing for GaN power switching devices

    公开(公告)号:US11831303B2

    公开(公告)日:2023-11-28

    申请号:US17533365

    申请日:2021-11-23

    Abstract: High accuracy current sense circuitry for power switching devices comprising GaN power transistors provides for current feedback functions, e.g. current loop control, over-current protection (OCP) and short-circuit protection (SCP). The current sense circuitry comprises a current mirror sense GaN transistor (Sense_GaN) and a power GaN transistor (Power_GaN) and a sampling circuit. The sampling circuit comprises first and second stage operational amplifiers to provide fast response and improved current sense accuracy, e.g. better than 1%, over a range of junction temperatures Tj. The Sense_GaN, Power_GaN and first stage operational amplifier have a common ground referenced to a Kelvin Source of the Power_GaN, so that the Sense_GaN and Power_GaN operate with the same gate-to-source voltage Vgs, to provide an accurate current ratio. Applications include current sensing for switching mode power supplies that need high speed and lossless current sense for current protection and feedback.

    Hybrid bulk capacitance circuit for AC/DC charger

    公开(公告)号:US11374489B2

    公开(公告)日:2022-06-28

    申请号:US17070309

    申请日:2020-10-14

    Abstract: A circuit for a multi-voltage input AC/DC charger, such as a Universal AC input AC/DC charger, is provided, comprising a plurality of capacitors having different voltage ratings that are connected in parallel, and a switching circuit comprising input voltage sensing and comparator drive circuitry, to allow for selective connection of one or more of the plurality of capacitors, responsive to a sensed input voltage. Since bulk capacitors occupy a significant proportion of the volume of an AC/DC charger, this solution provides for a reduction in system volume, with associated improvement in the power density of an isolated AC/DC charger.

    Architecture for AC/DC SMPS with PFC and multimode LLC DC/DC converter

    公开(公告)号:US11689098B2

    公开(公告)日:2023-06-27

    申请号:US17497233

    申请日:2021-10-08

    Abstract: An AC/DC Switching Mode Power Supply (SMPS) comprises a PFC stage, an isolated LLC DC/DC converter stage, and a control circuit that provides feedback/control signals to PFC and LLC controllers, to enable a plurality of operating modes, dependent on a sensed peak AC input voltage and required output voltage Vo. The PFC provides a first DC bus voltage Vdc (e.g. 200V) for low line AC input and a second DC bus voltage (e.g. 400V) for high line or universal AC input. A multi-mode LLC converter is operable in a half-bridge mode or a full-bridge mode. For low line AC input, output voltage Vo, and PFC output Vdc, the LLC operates in full-bridge mode; for high line input, output voltage Vo and PFC output 2×Vdc, the LLC operates in half-bridge mode; for universal AC input, output voltage 2×Vo, and PFC output 2×Vdc, the LLC operates in full-bridge mode.

    Architecture for multi-port AC/DC switching mode power supply

    公开(公告)号:US11463012B1

    公开(公告)日:2022-10-04

    申请号:US17688170

    申请日:2022-03-07

    Abstract: An architecture for a multi-port AC/DC Switching Mode Power Supply (SMPS) with Power Factor Correction (PFC) comprises power management control (PMC) for PFC On/Off Control and Smart Power Distribution, and optionally, a boost follower circuit. For example, in a universal AC/DC multi-port USB-C Power Delivery (PD) adapter, PMC enables turn-on and turn-off of PFC dependent on output port operational status and a combined load of active output ports. A microprocessor control unit (MCU) receives operational status, a voltage sense input and a current sense input for each USB port, computes output power for each USB port, and executes a power distribution protocol to turn-on or turn-off PFC dependent on the combined load from each USB port. Available power may be distributed intelligently to one or more ports, dependent on load. In an example embodiment, turning-off PFC for low load and low AC line input increases efficiency by 3% to 5%.

Patent Agency Ranking