Abstract:
An optical combiner includes an off-axis spatially multiplexed lens optically coupled to receive image light and direct the image light in an eye-ward direction. The off-axis spatially multiplexed lens includes a first sub-lens multiplexed with a second sub-lens. The first sub-lens and the sub-lens are configured to direct the image light to designated eyeward-regions.
Abstract:
An apparatus comprising a diffractive combiner having a front side, a rear surface, and an optical axis running substantially through the center of the diffractive combiner and normal to the back side. A display unit directs display light toward the back side of the diffractive combiner; the display unit positioned at a first angle relative to the optical axis, and the display light having a first range of wavelengths. An eye-tracking sensor receives eye-tracking radiation reflected by the back side of the diffractive combiner, the eye-tracking sensor positioned next to the display unit at a second angle relative to the optical axis, the second angle being different than the first angle and the eye-tracking radiation having a wavelength outside the first range of wavelengths. Other embodiments are disclosed and claimed.
Abstract:
A prescriptive see-through eyepiece includes a meniscus lens body and an optical combiner. The meniscus lens body has an external scene side with a convex curvature and an eye-ward side with a concave curvature. The optical combiner is disposed within the meniscus lens body to combine image light incident through the eye-ward side with external scene light incident through the external scene side into a combined image. The optical combiner is partially reflective and imparts substantially no lensing power to the external scene light passing through. The optical combiner along with the concave curvature of the eye-ward side are configured to impart prescriptive lensing to the image light while the convex curvature of the external scene side and the concave curvature of the eye-ward side are configured to impart the prescriptive lensing to the external scene light.
Abstract:
An optical combiner for a head-wearable display includes an eyepiece body and a plurality of diffractive optical element (“DOE”) segments. The eyepiece body has an eye-ward side and an external scene side. The DOE segments are disposed within the eyepiece body and are at least partially reflective to image light incident through the eye-ward side of the eyepiece body and at least partially transmissive to external scene light incident through the external scene side of the eyepiece body. The DOE segments are disjoint from each other and each is disposed along a different disjoint surface within the eyepiece body that is oriented at a different angle relative to the other DOE segments. The plurality of DOE segments operate to magnify and reflect the image light incident from an off-axis position to an eyebox sized area.
Abstract:
A method of in-eye icon projection using an electronic device includes emitting light with a light source in response to detecting an image condition. The light is then projected onto a diffraction grating, and the diffraction grating, when illuminated with the light, produces image light of a fixed icon. An image of the fixed icon is formed in an eye of a user, and the image of the fixed icon occupies only part of the user's field of view. The image light has a limited divergence such that the image of the fixed icon is only viewable in a single user's field of view.
Abstract:
An optical combiner includes an off-axis spatially multiplexed lens optically coupled to receive image light and direct the image light in an eye-ward direction. The off-axis spatially multiplexed lens includes a first sub-lens multiplexed with a second sub-lens. The first sub-lens and the sub-lens are configured to direct the image light to designated eyeward-regions.
Abstract:
An optical apparatus for a see-through near-to-eye display includes a diffractive optical combiner, one or more refractive correction lenses, and a diffractive correction element. The diffractive optical combiner has an eye-ward side and an external scene side and includes a reflective diffraction grating that is at least partially reflective to image light incident through the eye-ward side and at least partially transmissive to external scene light incident through the external scene side. The one or more refractive correction lenses are disposed in an optical path of the image light to aid in pre-correcting aberrations induced in the image light after reflection off of the diffractive optical combiner. The diffractive correction element is disposed in the optical path of the image light to pre-compensate for lateral color aberrations induced in the image light after reflection off of the diffractive optical combiner.
Abstract:
An optical apparatus includes an optical combiner, an image lens, and an external scene lens. The optical combiner has an eye-ward side and an external scene side and includes a partially reflective diffraction grating that is at least partially reflective to image light incident through the eye-ward side and at least partially transmissive to external scene light incident through the external scene side. A first mount is positioned to hold the image lens in an optical path of the image light to apply a first corrective prescription to the image light. A second mount is positioned to hold an external scene lens over the external scene side of the optical combiner to apply a second corrective prescription to the external scene light. The optical combiner combines the image light with the scene light to form a combined image that is corrected according to the first and second corrective prescriptions.
Abstract:
An optical apparatus includes an optical combiner, an image lens, and an external scene lens. The optical combiner has an eye-ward side and an external scene side and includes a partially reflective diffraction grating that is at least partially reflective to image light incident through the eye-ward side and at least partially transmissive to external scene light incident through the external scene side. A first mount is positioned to hold the image lens in an optical path of the image light to apply a first corrective prescription to the image light. A second mount is positioned to hold an external scene lens over the external scene side of the optical combiner to apply a second corrective prescription to the external scene light. The optical combiner combines the image light with the scene light to form a combined image that is corrected according to the first and second corrective prescriptions.
Abstract:
An apparatus comprising a diffractive combiner having a front side, a back side, and a combiner optical axis running substantially through the diffractive combiner and normal to the back side. A display unit having a display optical axis that directs the display light along the display optical axis toward the diffractive combiner. An eye-tracking sensor having a sensor optical axis that is positioned to receive eye-tracking radiation reflected by the diffractive combiner along the sensor optical axis. The combiner optical axis, the display optical axis, and the sensor optical axis intersect each other at the diffractive combiner.