Abstract:
An Airborne Wind Turbine (“AWT”) may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether has a core and at least one electrical conductor. The tether core may be terminated at a first location in a tether termination mount along an axis of the termination mount, and the at least one electrical conductor may be terminated at a second location in the tether termination mount along the same axis that the core is terminated. This termination configuration may focus tensile stress on the tether to the tether core, and minimize such stress on the at least one electrical conductor during aerial vehicle flight.
Abstract:
A system may include a tether, a slip ring, a tether gimbal assembly, a drive mechanism, a control system. The tether may include a distal tether end coupled to an aerial vehicle, a proximate tether end, and at least one insulated electrical conductor coupled to the aerial vehicle. The slip ring may include a fixed portion and a rotatable portion, where the rotatable portion is coupled to the tether. The tether gimbal assembly may be rotatable about at least one axis and is coupled to the fixed portion of the slip ring. The drive mechanism may be coupled to the slip ring and configured to rotate the rotatable portion of the slip ring. And the control system may be configured to operate the drive mechanism to control twist in the tether.
Abstract:
A system may include a tether, a tether gimbal assembly, a drive mechanism, and a control system. The tether may include a distal end, a proximate end, and at least one conductor. The tether gimbal assembly may be connected to the tether. The drive mechanism may be coupled to the tether gimbal assembly and may include a housing, a spindle, and a motor. The housing may be fixed to the tether gimbal assembly. The spindle may be rotatably coupled to the housing, and the tether may be coupled to the spindle and rotate in conjunction with the spindle. The motor may be coupled to the spindle and configured to rotate the spindle and the tether. And the control system may be configured to operate the drive mechanism to control twist in the tether.