Abstract:
This document describes techniques for radio frequency (RF) based micro-motion tracking. These techniques enable even millimeter-scale hand motions to be tracked. To do so, radar signals are used from radar systems that, with conventional techniques, would only permit resolutions of a centimeter or more.
Abstract:
This document describes techniques using, and devices embodying, radar-based gesture recognition using compressed sensing. These techniques and devices can enable a great breadth of gestures and uses for those gestures, such as gestures to use, control, and interact with computing and non-computing devices, from software applications to refrigerators. The techniques and devices are capable of providing a radar field that can sense gestures from multiple actors at one time and through obstructions using compressed sensing, thereby improving gesture breadth and accuracy over many conventional techniques using less complex components.
Abstract:
This document describes techniques and devices for type-agnostic radio frequency (RF) signal representations. These techniques and devices enable use of multiple different types of radar systems and fields through type-agnostic RF signal representations. By so doing, recognition and application-layer analysis can be independent of various radar parameters that differ between different radar systems and fields.
Abstract:
Systems and methods of capturing images are disclosed. For instance, a plurality of position signals associated with a mobile computing device can be received, the plurality of position signals can be obtained at least in part using one or more sensors implemented within the mobile computing device. A relative motion between the mobile computing device and a scattering point associated with a target can be determined. A plurality of return signals reflected from the scattering point can be received. Each return signal can correspond to a pulse transmitted by the mobile computing device. A target response associated with the scattering point can be determined based at least in part on the relative motion between the mobile computing device and the scattering point.
Abstract:
Various embodiments utilize application-based processing parameters to dynamically configure a radar-based detection system based upon an operating context of an associated device. A first application with execution priority on a device dynamically configures the radar-based detection system to emit a radar field suitable for a first operating context associated with the first application. The first application can also dynamically configure processing parameters of the radar-based detection system, such as digital signal processing parameters and machine-learning parameters. In some cases, a second application assumes execution priority over the first application, and dynamically reconfigures the radar-based detection system to emit a radar field suitable to a second operating context associated with the second application. Alternately or additionally, the second application can dynamically reconfigure the processing parameters of the radar-based detection system based upon the second operating context of the second application.
Abstract:
This document describes apparatuses and techniques for radar-enabled sensor fusion. In some aspects, a radar field is provided and reflection signals that correspond to a target in the radar field are received. The reflection signals are transformed to provide radar data, from which a radar feature indicating a physical characteristic of the target is extracted. Based on the radar features, a sensor is activated to provide supplemental sensor data associated with the physical characteristic. The radar feature is then augmented with the supplemental sensor data to enhance the radar feature, such as by increasing an accuracy or resolution of the radar feature. By so doing, performance of sensor-based applications, which rely on the enhanced radar features, can be improved.
Abstract:
This document describes techniques using, and devices embodying, radar gesture sensing using existing data protocols. These techniques and devices enable transmitting data according to an existing data protocol, modulating the data on a radar field to transmit to another device, and sensing user gestures by analyzing reflections of portions of transmitted data by the transmitting or receiving device. Techniques are also described to filter received signals based on addressing information in the transmitted data to limit gesture recognition at a receiving device to transmitting devices known to the receiver.
Abstract:
This document describes apparatuses and techniques for radar-enabled sensor fusion. In some aspects, a radar field is provided and reflection signals that correspond to a target in the radar field are received. The reflection signals are transformed to provide radar data, from which a radar feature indicating a physical characteristic of the target is extracted. Based on the radar features, a sensor is activated to provide supplemental sensor data associated with the physical characteristic. The radar feature is then augmented with the supplemental sensor data to enhance the radar feature, such as by increasing an accuracy or resolution of the radar feature. By so doing, performance of sensor-based applications, which rely on the enhanced radar features, can be improved.
Abstract:
This document describes techniques for radio frequency (RF) based micro-motion tracking. These techniques enable even millimeter-scale hand motions to be tracked. To do so, radar signals are used from radar systems that, with conventional techniques, would only permit resolutions of a centimeter or more.
Abstract:
Various embodiments dynamically learn user-customizable input gestures. A user can transition a radar-based gesture detection system into a gesture-learning mode. In turn, the radar-based gesture detection system emits a radar field configured to detect a gesture new to the radar-based gesture detection system. The radar-based gesture detection system receives incoming radio frequency (RF) signals generated by the outgoing RF signal reflecting off the gesture, and analyzes the incoming RF signals to learn one or more identifying characteristics about the gesture. Upon learning the identifying characteristics, the radar-based gesture detection system reconfigures a corresponding input identification system to detect the gesture when the one or more identifying characteristics are next identified, and transitions out of the gesture-learning mode.