Abstract:
Techniques and mechanisms for providing an eye-mountable device including an accommodation actuator. In an embodiment, fabrication of the eye-mountable device includes sealing layers of enclosure material to form a lens enclosure comprising a pinch-off region where the layers of enclosure material physically contact one another. The accommodation actuator includes a liquid crystal layer disposed between the layers of enclosure material in a central region around which the pinch-off region extends. In another embodiment, electrodes are disposed in the central region each between the liquid crystal layer and a respective one of the layers of enclosure material. The liquid crystal layer isolates the electrodes from one another in the central region.
Abstract:
A method involving forming a sacrificial layer on a working substrate; forming a first bio-compatible layer on the sacrificial layer such that the first bio-compatible layer adheres to the sacrificial layer, wherein the first bio-compatible layer defines a first side of a bio-compatible device; forming a conductive pattern on the first bio-compatible layer, the conductive pattern comprising a metal; mounting an electronic component to the conductive pattern; forming a self-assembled monolayer (SAM) on the conductive pattern by contacting the conductive pattern with a functionalized sulfur compound or a functionalized selenium compound; forming an adhesion layer on the SAM by contacting the SAM with an adhesion promoter; forming a second bio-compatible layer over the first bio-compatible layer, the electronic component, and the conductive pattern having the adhesion layer, wherein the second bio-compatible layer defines a second side of the bio-compatible device; and removing the sacrificial layer to release the bio-compatible device from the working substrate. The first bio-compatible layer defines a first side of a bio-compatible device. The second bio-compatible layer defines a second side of the bio-compatible device.
Abstract:
An eye-mountable device includes a flexible lens enclosure, anterior and posterior flexible conductive electrodes, and an accommodation actuator element. The flexible lens enclosure includes anterior and posterior layers that are sealed together. The anterior flexible conductive electrode is disposed within the flexible enclosure and across a center region of the flexible lens enclosure on a concave side of the anterior layer. The posterior flexible conductive electrode is disposed within the flexible enclosure and across the center region on a convex side of the posterior layer. The accommodation actuator element is disposed between the first and second flexible conductive electrodes. The anterior and posterior flexible conductive electrodes are transparent and electrically manipulate the accommodation actuator element.