Abstract:
A method for authorizing a smart-home device for enrollment with a demand-response program may include receiving, at a control server of an energy management system and for the smart-home device, identifying information for a user account. The method may also include sending the identifying information from the control server to an Application Program Interface (API) with an enrollment request. The method may additionally include receiving, at the control server, a determination from the API as to whether the identifying information for the user account was matched to an existing utility account. The method may further include based on the determination from the API, determining whether the smart-home device can be enrolled with the demand-response program.
Abstract:
A thermostat may be programmed to operate during cold-weather months by operating in a heat mode where the thermostat periodically causes the HVAC system to activate a heating function to heat an enclosure based at least in part on the stored setpoint schedule; receiving an indication from a thermostat management server of a demand response event while the thermostat is operating in the heat mode; determining whether the thermostat stores a user setting indicating that the thermostat should preheat the enclosure prior to reaching a scheduled setpoint in the stored setpoint schedule; and preheating the enclosure prior to the demand response event based on a determination that the thermostat stores the user setting indicating that the thermostat should preheat the enclosure prior to reaching the scheduled setpoint in the stored setpoint schedule.
Abstract:
A thermostat my include a stored setpoint schedule, temperature sensors providing temperature sensor measurements; and a processing system configured to control an HVAC system based at least in part on the setpoint temperature and the temperature sensor measurements. The processing system may be configured to control the HVAC system by receiving an indication of a first time interval, where energy is available to the HVAC system at a first rate during the first time interval, energy is available to the HVAC system at a second rate during a second time interval that is outside of the first time interval, and the first rate is higher than the second rate; identifying a first one or more setpoints in the plurality of setpoints of the stored setpoint schedule that occur in the first time interval; and decreasing a temperature component of at least one of the first one or more setpoints.
Abstract:
A thermostat may include one or more memory devices comprising a stored setpoint schedule, one or more temperature sensors configured to provide temperature sensor measurements, and a processing system configured to be in operative communication the one or more memory devices to determine a setpoint temperature, and in still further operative communication with a heating, ventilation, and air conditioning (HVAC) system to control the HVAC system based at least in part on the setpoint temperature and the temperature sensor measurements. The processing system may be configured to control the HVAC system by receiving an indication that a total instantaneous energy usage rate for a structure in which the thermostat is installed is projected to exceed a threshold amount; and altering the stored setpoint schedule to reduce an energy usage rate of the HVAC system.