Abstract:
Systems and methods for capturing omnistereo content for a mobile device may include receiving an indication to capture a plurality of images of a scene, capturing the plurality of images using a camera associated with a mobile device and displaying on a screen of the mobile device and during capture, a representation of the plurality of images and presenting a composite image that includes a target capture path and an indicator that provides alignment information corresponding to a source capture path associated with the mobile device during capture of the plurality of images. The system may detect that a portion of the source capture path does not match a target capture path. The system can provide an updated indicator in the screen that may include a prompt to a user of the mobile device to adjust the mobile device to align the source capture path with the target capture path.
Abstract:
Systems and methods are related to a camera rig and generating stereoscopic panoramas from captured images for display in a virtual reality (VR) environment.
Abstract:
Systems and methods are related to a camera rig and generating stereoscopic panoramas from captured images for display in a virtual reality (VR) environment.
Abstract:
Systems and methods are described for defining a set of images based on captured images, receiving a viewing direction associated with a user of a virtual reality (VR) head mounted display, receiving an indication of a change in the viewing direction. The methods further include configuring, a re-projection of a portion of the set of images, the re-projection based at least in part on the changed viewing direction and a field of view associated with the captured images, and converting the portion from a spherical perspective projection into a planar perspective projection, rendering by the computing device and for display in the VR head mounted display, an updated view based on the re-projection, the updated view configured to correct distortion and provide stereo parallax in the portion, and providing, to the head mounted display, the updated view including a stereo panoramic scene corresponding to the changed viewing direction.
Abstract:
Systems and methods are described include defining, at a computing device, a set of images based on captured images, projecting, at the computing device, a portion of the set of images from a planar perspective image plane onto a spherical image plane by recasting a plurality of viewing rays associated with the portion of the set of images from a plurality of viewpoints arranged around a curved path to a viewpoint, determining, at the computing device, a periphery boundary corresponding to the viewpoint and generating updated images by removing pixels that are outside of the periphery boundary, and providing, for display, the updated images within the bounds of the periphery boundary.
Abstract:
Systems and methods are described include defining, at a computing device, a set of images based on captured images, projecting, at the computing device, a portion of the set of images from a planar perspective image plane onto a spherical image plane by recasting a plurality of viewing rays associated with the portion of the set of images from a plurality of viewpoints arranged around a curved path to a viewpoint, determining, at the computing device, a periphery boundary corresponding to the viewpoint and generating updated images by removing pixels that are outside of the periphery boundary, and providing, for display, the updated images within the bounds of the periphery boundary.
Abstract:
Systems and methods are described for defining a set of images based on captured images, receiving a viewing direction associated with a user of a virtual reality (VR) head mounted display, receiving an indication of a change in the viewing direction. The methods further include configuring, a re-projection of a portion of the set of images, the re-projection based at least in part on the changed viewing direction and a field of view associated with the captured images, and converting the portion from a spherical perspective projection into a planar perspective projection, rendering by the computing device and for display in the VR head mounted display, an updated view based on the re-projection, the updated view configured to correct distortion and provide stereo parallax in the portion, and providing, to the head mounted display, the updated view including a stereo panoramic scene corresponding to the changed viewing direction.
Abstract:
A processing device of a media server selects a media item to be provided to users via a satellite broadcast system, encrypts the media item using an encryption key to generate an encrypted media item, and transmits the encrypted media item to the satellite broadcast system via a first communication protocol. The processing device receives a request from a user device for authorization to decrypt the encrypted media item obtained by the user device via a direct connection with the satellite broadcast system. The request is received by the media server via a second communication protocol that is different from the first communication protocol. The processing device determines whether the user device is authorized to decrypt the encrypted media item, and transmits a key for decrypting the encrypted media item in response to the user device being authorized to decrypt the encrypted media item.
Abstract:
Embodiments efficiently account for variations in camera position across an image, when the image is texture mapped from a single position associated with the image. In an embodiment, each pixel of an image is texture mapped to a three dimensional model. A time offset mask for the image and a value representing a speed of the camera are received. The time offset mask and speed values are used to create an offset mask. The offset mask is applied to the texture mapped model to correct for variations in camera position across an image.
Abstract:
A processing device of a media server selects a media item to be provided to users via a satellite broadcast system, encrypts the media item using an encryption key to generate an encrypted media item, and transmits the encrypted media item to the satellite broadcast system via a first communication protocol. The processing device receives a request from a user device for authorization to decrypt the encrypted media item obtained by the user device via a direct connection with the satellite broadcast system. The request is received by the media server via a second communication protocol that is different from the first communication protocol. The processing device determines whether the user device is authorized to decrypt the encrypted media item, and transmits a key for decrypting the encrypted media item in response to the user device being authorized to decrypt the encrypted media item.