Abstract:
In a spectrometry device, a control unit controls a light source so that input of excitation light to an internal space is maintained in a first period, and that the input of the excitation light to the internal space is stopped in a second period, and the analysis unit calculates the photoluminescence quantum yield of a long afterglow emission material on the basis of the number of absorbed photons of the long afterglow emission material obtained on the basis of excitation light spectral data in the first period and the number of light emission photons of the long afterglow emission material obtained on the basis of light emission spectral data in any of the first period, the second period, and a total period of the first period and the second period.
Abstract:
A measuring device includes: an integrating sphere; an excitation optical system; a light detector; and a first detection optical system. The optical axis of the excitation light incident on the subject to be measured in the integrating sphere in the excitation optical system and the optical axis of the light to be measured that is emitted from the integrating sphere in the first detection optical system obliquely intersect with each other, the first detection optical system has an opening portion that limits a detection range of the light to be measured in the light detector, and an irradiation spot of the excitation light on the subject to be measured and the opening portion are in an optically conjugate relationship.
Abstract:
A spectroscopic measurement apparatus includes a light source, an integrator, a spectroscopic detector, and an analysis unit. The integrator includes an internal space in which a measurement object is disposed, a light input portion for inputting light to the internal space, a light output portion for outputting light from the internal space, a sample attachment portion for attaching the measurement object, and a filter attachment portion for attaching a filter unit. The filter unit has a transmission spectrum in which an attenuation rate for excitation light is larger than an attenuation rate for up-conversion light, and attenuates the light output from the light output portion. The analysis unit analyzes luminous efficiency of the measurement object on the basis of the transmission spectrum data and the spectroscopic spectrum data acquired by the spectroscopic detector.
Abstract:
A measuring device includes: an excitation light source; an integrating sphere; an excitation optical system; a light detector; and a first detection optical system, wherein the first detection optical system has an opening portion, the excitation optical system and the first detection optical system have a separation optical element, a first converging element, and a second converging element, wherein the optical axis of the excitation light incident on the subject to be measured and the optical axis of the light to be measured emitted from the integrating sphere obliquely intersect with each other by means of the separation optical element and the first converging element, and wherein an irradiation spot and the opening portion are in an optically conjugate relationship by means of the first converging element and the second converging element.
Abstract:
A spectrometry device includes a light source, an integrator configured to have an internal space in which a long afterglow emission material is disposed and output detection light from the internal space, a spectroscopic detector, an analysis unit configured to analyze a photoluminescence quantum yield of the long afterglow emission material, and a control unit configured to control switching between presence and absence of input of excitation light to the internal space and an exposure time in the spectroscopic detector. The control unit controls the light source so that the input of the excitation light to the internal space is maintained in a first period and the input of the excitation light to the internal space is stopped in a second period, and controls the spectroscopic detector so that an exposure time in the second period becomes longer than an exposure time in the first period.
Abstract:
A spectroscopic measurement apparatus includes a light source, an integrator, a first spectroscopic detector, a second spectroscopic detector, and an analysis unit. The integrator includes an internal space in which a measurement object is disposed, a light input portion for inputting light to the internal space, a light output portion for outputting light from the internal space, and a sample attachment portion for attaching the measurement object. The first spectroscopic detector receives the light output from the integrator, disperses the light of a first wavelength region, and acquires first spectrum data. The second spectroscopic detector receives the light output from the integrator, disperses the light of a second wavelength region, and acquires second spectrum data. The first wavelength region and the second wavelength region include a wavelength region partially overlapping each other.
Abstract:
A spectral measurement apparatus includes a light source for generating a excitation light; an integrator having an input opening portion and an output opening portion; a housing portion arranged in the integrator and for housing a sample; an incidence optical system for making the excitation light incident to the sample; a photodetector for detecting a light to be measured output from the output opening portion; and an analysis means for calculating a light absorptance of the sample, based on a detection value detected by the photodetector, and an irradiation area with the excitation light at a position of incidence to the sample is set larger than an irradiated area of the sample, and the analysis means performs an area ratio correction regarding the irradiation area with the excitation light and the irradiated area of the sample, with respect to the light absorptance calculated.
Abstract:
A spectral measurement apparatus for irradiating a sample as a measurement object with excitation light and detecting light to be measured includes a light source generating the excitation light; an integrator having an input opening portion through which the excitation light is input, and an output opening portion from which the light to be measured is output; a housing portion arranged in the integrator and housing the sample; an incidence optical system making the excitation light incident to the sample; a photodetector detecting the light to be measured output from the output opening portion; and an analysis device calculating a quantum yield of the sample, based on a detection value detected by the photodetector, and the excitation light is applied to the sample so as to include the sample.
Abstract:
A measurement device includes: an excitation optical system; an illumination optical system, and an image capturing unit. The illumination optical system includes a light transmission member having a central region that has a first color and a peripheral region that has a second color and surrounds the central region, and the excitation optical system and the illumination optical system are optically connected to each other such that in a field of view of the image capturing unit, an irradiation spot of the excitation light on the subject to be measured is included in a central spot region of the illumination light that has passed through the central region and is surrounded by a peripheral spot region of the illumination light that has passed through the peripheral region.
Abstract:
A spectroscopic measurement apparatus includes a light source, an integrator, a spectroscopic detector, and an analysis unit. The integrator includes an internal space in which a measurement object is disposed, a light input portion for inputting light to the internal space, a light output portion for outputting light from the internal space, a sample attachment portion for attaching the measurement object, and a filter attachment portion for attaching a filter unit. The filter unit has a transmission spectrum in which an attenuation rate for excitation light is larger than an attenuation rate for up-conversion light, and attenuates the light output from the light output portion. The analysis unit analyzes luminous efficiency of the measurement object on the basis of the transmission spectrum data and the spectroscopic spectrum data acquired by the spectroscopic detector.