Abstract:
Examples of fluid ejection apparatuses and methods for making fluid ejection apparatuses are described. An example method may include forming a fluid feed slot in a bulk layer of a substrate, forming a plurality of ink feed channels in at least an epitaxial layer of the substrate, each of the ink feed channels fluidically coupled to the fluid feed slot, and forming a plurality of drop generators over the substrate such that the epitaxial layer of the substrate is between the plurality of drop generators and the bulk layer and such that the each of the drop generators is fluidically coupled to the fluid feed slot by at least one of the ink feed channels.
Abstract:
In one example in accordance with the present disclosure a printhead with a number of EPROM cells is described. The printhead deposits fluid onto a print medium. The printhead also includes a number of EPROM cells. Each EPROM cell includes a substrate having a source and a drain disposed therein, a floating gate separated from the substrate by a first dielectric layer. The floating gate includes a multi-metal layer that is a metal etched layer. Each EPROM cell also includes a control gate separated from the multi-metal layer of the floating gate by a second dielectric layer.
Abstract:
Ink property sensing on a printhead is described. In an example, a substrate for a printhead includes a cap layer having bores. Chambers are formed beneath the cap layer in fluidic communication with the bores. Fluid ejectors are disposed in at least a portion of the chambers. At least one ion-sensitive field effect transistor (ISFET) is disposed in a respective at least one of the chambers. An electrode is disposed in each of the chambers having an ISFET and capacitively coupled to said ISFET through a dielectric.