Abstract:
In some examples, an ink level sensor includes a sense capacitor between a first node and ground, a first switch to couple a first voltage to the first node and charge the sense capacitor, a second switch to couple the first node with a second node and share the charge between the sense capacitor and a reference capacitor, causing a second voltage at the second node, and a transistor having a drain, a gate coupled to the second node, and a source coupled to ground, the transistor to provide a drain to source resistance in proportion to the second voltage.
Abstract:
In one example, a drop detector includes a light source for illuminating drops passing through a drop zone, multiple light detectors near the light source for detecting light scattered off drops passing through the drop zone, and multiple lenses each configured to focus light from the drop zone on one of the light detectors. In one example, each light detector is arranged in the same plane with all of the other light detectors. In one example, the lenses are configured to focus light from two different spaces in the drop zone on different detectors or groups of detectors. In one example, the lenses are configured to focus light from a single space in the drop zone on multiple detectors.
Abstract:
In some examples, a method of sensing an ink level includes applying a pre-charge voltage to a sense capacitor to charge the sense capacitor with a charge, sharing the charge between the sense capacitor and a reference capacitor, causing a reference voltage at a gate of an evaluation transistor, and determining a resistance from a drain to a source of the evaluation transistor that results from the reference voltage.
Abstract:
An inkjet print head includes data signal lines configured to supply inkjet control voltages and non-volatile memory cell random access addresses. The inkjet print head includes an inkjet nozzle array wherein each nozzle in the array is configured to communicate with a data signal line. Also a non-volatile attribute memory cell array is included in the inkjet print head wherein each memory cell in the array is accessed through a data signal line shared with the nozzle array.
Abstract:
An integrated circuit (IC) erasable programmable read-only memory (EPROM) structure for a thermal inkjet printhead includes: a fire line to provide fire line data; a select line to provide selecting data; a firing cell coupled to the fire line; an EPROM cell coupled to the fire line; a selector cell coupled to the select line, the firing cell and the EPROM cell; and a data switching circuit to provide address data to the firing cell or the EPROM cell. The data switching circuit and the selector cell selectively enable transfer of the fire line data from the fire line to the firing cell or the EPROM cell as a function of state of the selecting data on the select line and the address data from the data switching circuit.
Abstract:
In some examples, a transistor includes a drain, a channel, and a gate. The channel surrounds the drain and has a channel length to width ratio. The gate is over the channel to provide an active channel region that has an active channel region length to width ratio that is greater than the channel length to width ratio.
Abstract:
An inkjet print head includes data signal lines configured to supply inkjet control voltages and non-volatile memory cell random access addresses. The inkjet print head includes an inkjet nozzle array wherein each nozzle in the array is configured to communicate with a data signal line. Also a non-volatile attribute memory cell array is included in the inkjet print head wherein each memory cell in the array is accessed through a data signal line shared with the nozzle array.
Abstract:
In some examples, a transistor includes a drain, a channel, and a gate. The channel surrounds the drain and has a channel length to width ratio. The gate is over the channel to provide an active channel region that has an active channel region length to width ratio that is greater than the channel length to width ratio.
Abstract:
A system for drop detection of fluid drops ejected by a printing device includes a drop detector comprising a radiation source and radiation sensor for illuminating a region in which drops are ejected by a print bar and detecting radiation from the radiation source that is reflected by backscattering from the drops to the radiation sensor; and a controller for controlling the drop detector and the print bar, wherein the controller uses a signal output by the drop detector to determine whether nozzles of the print bar are operating properly.
Abstract:
A system for drop detection of fluid drops ejected by a printing device includes a drop detector comprising a radiation source and radiation sensor for illuminating a region in which drops are ejected by a print bar and detecting radiation from the radiation source that is reflected by backscattering from the drops to the radiation sensor; and a controller for controlling the drop detector and the print bar, wherein the controller uses a signal output by the drop detector to determine whether nozzles of the print bar are operating properly.