Abstract:
An accessory gear box for a gas turbine engine having a drive shaft with a rotational axis and a tower shaft coupled to the drive shaft is provided. The accessory gear box includes a first plurality of gears arranged, which extend along a first axis substantially parallel to the rotational axis of the drive shaft. The accessory gear box includes a second plurality of gears, which extend along a second axis. The accessory gear box includes a first shaft, with one of the first plurality of gears coupled to the first shaft, and one of the second plurality of gears coupled to a second shaft. The one of the second plurality of gears coupled to the first shaft includes a first engagement surface and a second engagement surface, and the second engagement surface is coupled to another one of the second plurality of gears to drive the second shaft.
Abstract:
An accessory gear box for a gas turbine engine having a drive shaft with a rotational axis and a tower shaft coupled to the drive shaft is provided. The accessory gear box includes a first plurality of gears arranged, which extend along a first axis substantially parallel to the rotational axis of the drive shaft. The accessory gear box includes a second plurality of gears, which extend along a second axis. The accessory gear box includes a first shaft, with one of the first plurality of gears coupled to the first shaft, and one of the second plurality of gears coupled to a second shaft. The one of the second plurality of gears coupled to the first shaft includes a first engagement surface and a second engagement surface, and the second engagement surface is coupled to another one of the second plurality of gears to drive the second shaft.
Abstract:
Embodiments of icing resistant total temperature probes with integrated ejectors are provided. One air data probe comprises: a base; a body having a leading and trailing edges: a first passage defining a first annulus; a temperature sensor within the first passage; a heat shield defining an exterior wall of at least part of the first passage, wherein the sensor is positioned within the shield; a second passage comprising a second annulus defined by a space between the shield and the body; an intake port having an intake aperture that opens to the first and second passages; a separate heated airflow passage, the heated airflow passage having an air input port configured to couple to an air supply source and following a path within the probe body; an integrated air ejector coupled to heated airflow passage to motivate air into the intake aperture and through the first and second air passages.
Abstract:
Plenums for bifurcated ducts and bifurcated ducts are provided for stabilizing flow therethrough. The plenum comprises an outer cylindrical body intersected by a pair of exhaust duct stubs that are configured to be coupled to a corresponding pair of exhaust ducts and an inner body. The outer cylindrical body includes an axial rear end portion. The inner body is disposed in the axial rear end portion and increases in diameter in the aft direction. The inner body comprises one of a generally axi-symmetrical inner body or a non-axi-symmetrical inner body. The bifurcated duct comprises the plenum and the pair of exhaust ducts. Exhaust systems are also provided.
Abstract:
Systems and methods for icing resistant total air temperature probes with air jets are presented. In one embodiment, a probe comprises: a base having a forced air input port; and a body having leading and trailing edges extending from the base, the body comprising: a first interior airflow passage; a temperature sensor positioned within the first airflow passage; a notched intake port at a distal end of the body including an open channel extending into an intake aperture, and a cutaway region defining a recessed second face inset from the first face and exposes the open channel. The intake aperture opens into the first interior airflow passage, the notched intake port comprising air jet ports at a tip of the notched intake port; and a heated airflow passage through the body and isolated from the first interior airflow passage, coupling the forced air input port to the air jet ports.
Abstract:
Embodiments of icing resistant total temperature probes with integrated ejectors are provided. One air data probe comprises: a base; a body having a leading and trailing edges: a first passage defining a first annulus; a temperature sensor within the first passage; a heat shield defining an exterior wall of at least part of the first passage, wherein the sensor is positioned within the shield; a second passage comprising a second annulus defined by a space between the shield and the body; an intake port having an intake aperture that opens to the first and second passages; a separate heated airflow passage, the heated airflow passage having an air input port configured to couple to an air supply source and following a path within the probe body; an integrated air ejector coupled to heated airflow passage to motivate air into the intake aperture and through the first and second air passages.
Abstract:
Systems and methods for icing resistant total air temperature probes with air jets are presented. In one embodiment, a probe comprises: a base having a forced air input port; and a body having leading and trailing edges extending from the base, the body comprising: a first interior airflow passage; a temperature sensor positioned within the first airflow passage; a notched intake port at a distal end of the body including an open channel extending into an intake aperture, and a cutaway region defining a recessed second face inset from the first face and exposes the open channel. The intake aperture opens into the first interior airflow passage, the notched intake port comprising air jet ports at a tip of the notched intake port; and a heated airflow passage through the body and isolated from the first interior airflow passage, coupling the forced air input port to the air jet ports.
Abstract:
Plenums for bifurcated ducts and bifurcated ducts are provided for stabilizing flow therethrough. The plenum comprises an outer cylindrical body intersected by a pair of exhaust duct stubs that are configured to be coupled to a corresponding pair of exhaust ducts and an inner body. The outer cylindrical body includes an axial rear end portion. The inner body is disposed in the axial rear end portion and increases in diameter in the aft direction. The inner body comprises one of a generally axi-symmetrical inner body or a non-axi-symmetrical inner body. The bifurcated duct comprises the plenum and the pair of exhaust ducts. Exhaust systems are also provided.