Abstract:
Systems and methods are disclosed for verifying a vehicle component. In various embodiments, a system for verifying a vehicle component may comprise a near-to-eye (NTE) display system that includes an NTE tracking controller, a controller communicatively coupled to the NTE tracking controller, and a component database communicatively coupled to the controller. The controller may be configured to receive component data from the component database and communicate the component data to the NTE tracking controller based upon focus data, where the focus data is based upon a head position of an operator.
Abstract:
A method for providing visual overlay assistance to a flight crew onboard an aircraft is provided. The method presents, via visual overlay device display, required settings for a plurality of flight deck instruments located in a flight deck onboard an aircraft, wherein the required settings are presented as graphical elements superimposed over each of the plurality of flight deck instruments.
Abstract:
Systems and methods for displaying object data within an airport moving map (“AMM”) are disclosed. In various embodiments, the systems may comprise an avionics database, a flight management system comprising a processor communicatively coupled to the avionics database, and/or a display communicatively coupled to the processor, the processor configured to receive AMM data from the avionics database, receive object data, and/or display the AMM, the AMM including an image of the object, the AMM further including an image of an area that may be obscured from a field of view of a pilot by the object
Abstract:
A system and method for increasing the vertical situational awareness of a pilot of a host aircraft, comprises rendering symbology on a vertical situation display of the host aircraft, the symbology comprising (1) a traffic scenario including at least the host aircraft and a second aircraft, the second aircraft involved in an ITP transition, and (2) flight level allocation data assigned to the second aircraft by air traffic control.
Abstract:
A system and method for increasing the vertical situational awareness of a pilot of a host aircraft, comprises rendering symbology on a vertical situation display of the host aircraft, the symbology comprising (1) a traffic scenario including at least the host aircraft and a second aircraft, the second aircraft involved in an ITP transition, and (2) flight level allocation data assigned to the second aircraft by air traffic control.
Abstract:
A method and apparatus is provided for reducing the ITP rejection ratio. After identifying a reference aircraft, the ITP criteria associated with the reference aircraft is evaluated. If the ITP transition time overlaps with a maneuver time of the reference aircraft, the ITP request is not transmitted. The flight plan of the reference aircraft is analyzed to detect an upcoming reference aircraft maneuver.
Abstract:
A method for providing emergency alerts onboard an aircraft is provided. The method obtains chart data associated with a current flight of the aircraft; extracts flight constraints from the chart data, wherein the flight constraints comprise restrictions for performing action items applicable to the current flight; compares the flight constraints to flight data associated with the current flight, the flight data comprising an approved flight plan, an estimated time of arrival, Automatic Terminal Information Service (ATIS) data, flight plan restriction data, and onboard equipment failure; identifies at least one of the flight constraints that applies to the current flight, by the at least one processor, based on the comparing; and presents an alert associated with the at least one of the flight constraints.
Abstract:
Systems and methods are disclosed for verifying a vehicle component. In various embodiments, a system for verifying a vehicle component may comprise a near-to-eye (NTE) display system that includes an NTE tracking controller, a controller communicatively coupled to the NTE tracking controller, and a component database communicatively coupled to the controller. The controller may be configured to receive component data from the component database and communicate the component data to the NTE tracking controller based upon focus data, where the focus data is based upon a head position of an operator.
Abstract:
Systems and methods for displaying object data within an airport moving map (“AMM”) are disclosed. In various embodiments, the systems may comprise an avionics database, a flight management system comprising a processor communicatively coupled to the avionics database, and/or a display communicatively coupled to the processor, the processor configured to receive AMM data from the avionics database, receive object data, and/or display the AMM, the AMM including an image of the object, the AMM further including an image of an area that may be obscured from a field of view of a pilot by the object.