Abstract:
A camera-based obstacle detection system includes a first camera, a second camera, and one or more processors configured to acquire a first image from the first camera, acquire a second image from the second camera, determine a depth of an object based on a location of the object in the first image relative to a location of the object in the second image, and in response to the depth exceeding a threshold depth value, generate an alert.
Abstract:
Systems and methods for displaying a location reference indicator (LRI) associated with an ownship icon are provided. In various embodiments, an airport moving map (AMM) is displayed, and the ownship icon is displayed in the AMM, where the ownship icon represents the ownship. A degree of zoom of the AMM is determined. In response to a determination that the degree of zoom is not within a range of center referenced threshold values, a first LRI is displayed that indicates that the icon representing the ownship is not to scale with other objects displayed in the AMM. In response to a determination that the degree of zoom is within the range of center referenced threshold values, a second LRI is displayed.
Abstract:
A camera-based obstacle detection system includes a first camera, a second camera, and one or more processors configured to acquire a first image from the first camera, acquire a second image from the second camera, determine a depth of an object based on a location of the object in the first image relative to a location of the object in the second image, and in response to the depth exceeding a threshold depth value, generate an alert.
Abstract:
In some examples, a processor is configured to control a ground obstacle collision alerting system of an aircraft to deactivate delivery of ground obstacle collision alerts in response to determining the aircraft is in a designated ground area. In some examples, the processor is configured to determine the aircraft is in the designated ground area based on user input, based on a geographic location of the aircraft, or both. The processor is further configured to control the ground obstacle collision alerting system to automatically reactivate the delivery of the ground obstacle collision alerts in response to determining the aircraft is outside of the designated ground area. In some examples, the processor is configured to determine the aircraft is outside of the designated ground area based on a geographic location of the aircraft, a ground speed of the aircraft, or both.
Abstract:
Embodiments of the subject application provide methods and systems for an autonomous aircraft guiding mobile unit (GMU). The GMU includes one or more light modules, one or more processing units, and one or more data storage mediums. The one or more data storage mediums include instructions which, when executed by the one or more processing units, cause the one or more processing units to receive control messages from a traffic control ground station (TCGS), the control messages assigning the GMU to an aircraft and controlling movement of the GMU and its assigned aircraft, and to provide light commands to a pilot of the assigned aircraft with the one or more light modules, the light commands directing movement of the assigned aircraft during taxiing.
Abstract:
Systems and methods for displaying a location reference indicator (LRI) associated with an ownship icon are provided. In various embodiments, an airport moving map (AMM) is displayed, and the ownship icon is displayed in the AMM, where the ownship icon represents the ownship. A degree of zoom of the AMM is determined. In response to a determination that the degree of zoom is not within a range of center referenced threshold values, a first LRI is displayed that indicates that the icon representing the ownship is not to scale with other objects displayed in the AMM. In response to a determination that the degree of zoom is within the range of center referenced threshold values, a second LRI is displayed.
Abstract:
In some examples, a processor is configured to control a ground obstacle collision alerting system of an aircraft to deactivate delivery of ground obstacle collision alerts in response to determining the aircraft is in a designated ground area. In some examples, the processor is configured to determine the aircraft is in the designated ground area based on user input, based on a geographic location of the aircraft, or both. The processor is further configured to control the ground obstacle collision alerting system to automatically reactivate the delivery of the ground obstacle collision alerts in response to determining the aircraft is outside of the designated ground area. In some examples, the processor is configured to determine the aircraft is outside of the designated ground area based on a geographic location of the aircraft, a ground speed of the aircraft, or both.