摘要:
The present invention provides a three position hydraulic piston assembly for a gear ratio change mechanism for a transmission exhibiting reduced gear shift noise. The three position hydraulic piston assembly includes a master piston and motion retarding assemblies that act near both travel limits of the master piston. The master piston includes symmetrical passageways that provide hydraulic fluid flow to small chambers at each end of the piston that are closed off as the piston approaches its travel limits. Hydraulic fluid trapped in the chambers decelerates the piston and is bled off through an orifice allowing the piston to reach its travel limit and quickly and quietly engage a gear ratio.
摘要:
A hydraulic control system for actuating at least one torque transmitting device in a transmission includes a sump, a pump in communication with the sump, and an accumulator. A first control device and a second control device control the communication of hydraulic fluid between the pump, the accumulator, and the torque transmitting device.
摘要:
A hydraulic control system for actuating at least one torque transmitting device in a transmission includes a sump, a pump in communication with the sump, and an accumulator. A first control device and a second control device control the communication of hydraulic fluid between the pump, the accumulator, and the torque transmitting device.
摘要:
A system for providing pressurized hydraulic fluid includes a pump. A bypass valve assembly includes an inlet port in communication with the pump and an outlet port in communication with an accumulator. The pump and the accumulator are both in communication with a hydraulic control system that controls, lubricates, and cools a transmission of a motor vehicle. The bypass valve assembly has a valve moveable between at least a two positions. The bypass valve assembly is operable to bypass the accumulator when the vehicle is first started such that the pump charges the hydraulic control system before charging the accumulator. The accumulator provides pressurized hydraulic fluid to the hydraulic control system after vehicle start.
摘要:
A valve body assembly for a hybrid drive unit includes a pressure regulator valve, a first on/off shift valve for controlling a stationary clutch, a second on/off shift valve for controlling a rotating clutch, and a third on/off shift valve for controlling a damper bypass clutch. The control system controls the stationary clutch and the rotating clutch to operate the hybrid drive unit in four different modes. The first shift valve, the second shift valve and the third shift valve do not include a regulated pressure feedback port, nor a pressure switch for indicating a clutch fill level.
摘要:
The present invention provides a system for shifting or controlling a dual clutch transmission where the transmission may operate in at least a first mode of operation and a second mode of operation. The system includes a controller and a plurality of solenoids in fluid communication with a valve assembly. Selective activation of the solenoids by the controller engages the valve assembly to provide the first mode and the second mode of operation.
摘要:
A servo system includes pressurized fluid, and one or more fluid control devices (FCD) such as a valve or actuator, with at least one FCD having an element with a variable property that varies in response to a stimulus. The FCD controls a flow rate or pressure transmission of the fluid within the servo system. The element may include an active return spring having a variable stiffness. The servo system may operate as an interlock system for a transmission. A method for moving an output load using a servo system includes providing a first FCD with an active element, connecting an output load to a second FCD, activating the active element with a stimulus to vary a property of the active element, transmitting a force from the pressurized fluid to the second FCD, and moving the output load from a first position to a second position in response to the force.
摘要:
A hydraulic servo assembly includes a piston slidably disposed within a housing and a pin extending from the piston. The pin is interconnected with a servo link rod of the ETRS system. A port enables inlet of hydraulic fluid to induce movement of the piston and the pin from a first position to a second position to pull the servo link rod thereby shifting the transmission range to the out-of-park position. When in the first position the pin biases a forward-reverse enable (FRE) valve of the ETRS system in a first position. When in the second position a bias force of the pin is relieved from the FRE valve enabling the FRE valve to shift to a second position.
摘要:
An electro-hydraulic control for a continuously variable transmission includes a first regulator valve which is controlled to provide a high pressure output to control the ratio within the continuously variable transmission and a second regulator valve which is controlled to provide an engagement pressure for torque transmitting mechanisms within the transmission. The control incorporates multiplexing of the valve components, creates prioritization of fluid flow, detection of priority mode of operation, over-pressurization protection valves, and ensures a minimum of fluid flow to the torque transmitting mechanisms and the oil cooler.
摘要:
An electro-hydraulic control mechanism provides controlled engagement pressure for both a torque converter clutch and a shifting torque transmitting mechanism. The control mechanism include a TCC regulator valve that establishes the engagement pressure for the torque converter clutch and a TTM regulator valve that controls the engagement pressure for the torque transmitting mechanisms. An electronically-controlled variable bleed solenoid controls the output pressure level of both of the regulator valves. A control valve is employed to multiplex the output of the regulator valves and to ensure that the torque transmitting mechanism remains engaged during the engagement of the torque converter clutch. The control valve also ensure that the output pressure of the TTM regulator valve is communicated with a manual control valve in the event of an unexpected discontinuance of electrical power.