摘要:
The invention relates to a paste for forming a solar cell electrode, comprising electrically conductive metal particles, glass frit, a cross-linkable agent, a photo polymerization initiator and organic solvent, wherein the content of the cross-linkable agent is 1.0 to 20.0 wt %, the content of the photo polymerization initiator is 0.2 to 15.0 wt %, the content of the organic solvent is greater than 1.0 wt %, based on the total weight of the paste, and wherein over 90 wt % of the organic solvent based on the total weight of the organic solvent has a boiling point at 85° C. or higher.
摘要:
A method for manufacturing a solar cell electrode, comprising the steps of: (a) applying a conductive paste for bus electrode to a wafer in order to form a bus electrode pattern; (b) depositing onto the wafer a photocurable conductive paste for finger electrode from a discharge slot of a dispenser nozzle to thereby form an uncured finger electrode pattern on the wafer, wherein the nozzle moves parallel to the wafer; and (c) curing the uncured finger electrode pattern by exposing the uncured finger electrode pattern to UV light either after forming the uncured finger electrode pattern on the wafer in the step (b), or concurrent with the step (b).
摘要:
The invention is directed to a thermosetting electroconductive paste for forming electroconductive bumps at predetermined locations on at least one circuit layer that is laminated to an insulating layer. Upon lamination the electroconductive bumps penetrate the insulating layer forming an electrical connection to a second circuit layer. The paste comprises, based on total composition, 80 to 90 wt % electroconductive powders comprising at least a first and second electroconductive metal powder of which packing densities are in the range of 20% or less of the average density (sp. gr.) of metal for the first powder and 20 to 40% of the average density (sp. gr.) of metal for the second powder; and 10 to 20 wt % epoxy resin, curing agent, and solvent.
摘要:
In a paste for a solar cell light-receiving surface electrode including silver particles, glass frit, resin binder, and thinner, silver particles with a specific surface of 0.20-0.60 m2/g are used as the silver particles. The silver particles are preferably included at 80 mass % or more to the total amount of silver particles being included in the paste.
摘要:
A high critical temperature and high critical current density superconductor containing a matrix phase of a metal oxide expressed by the formula RE.sup.1 Ba.sub.2 Cu.sub.3 O.sub.p wherein RE.sup.1 stands for La, Nd, Sm, Eu or Gd and p is a number of 6.8-7.2, a first dispersed phase of a metal oxide expressed by the formula RE.sup.2.sub.1+d Ba.sub.2-d Cu.sub.3 O.sub.q wherein RE.sup.2 stands for La, Nd, Sm, Eu or Gd, d is a number of 0
摘要:
In a paste for a solar cell light-receiving surface electrode including silver particles, glass frit, resin binder, and thinner, silver particles with a specific surface of 0.20-0.60 m2/g are used as the silver particles. The silver particles are preferably included at 80 mass % or more to the total amount of silver particles being included in the paste.
摘要:
In a paste for a solar cell light-receiving surface electrode including silver particles, glass frit, resin binder, and thinner, silver particles with a specific surface of 0.20-0.60 m2/g are used as the silver particles. The silver particles are preferably included at 80 mass % or more to the total amount of silver particles being included in the paste.
摘要:
In a paste for a solar cell light-receiving surface electrode including silver particles, glass frit, resin binder, and thinner, silver particles with a specific surface of 0.20-0.60 m2/g are used as the silver particles. The silver particles are preferably included at 80 mass % or more to the total amount of silver particles being included in the paste.
摘要:
In a paste for a solar cell light-receiving surface electrode including silver particles, glass frit, resin binder, and thinner, silver particles with a specific surface of 0.20-0.60 m2/g are used as the silver particles. The silver particles are preferably included at 80 mass % or more to the total amount of silver particles being included in the paste.