摘要:
A membrane-electrode assembly 1 having an anode catalyst layer 20 and a cathode catalyst layer 30 which are mutually opposing and a polymer electrolyte membrane 10 formed between the anode catalyst layer 20 and cathode catalyst layer 30, wherein the anode catalyst layer 20 has a plurality of polymer layers 20a, 20b containing a polymer in which a repeating unit (a) with an ion-exchange group and a repeating unit (b) with no ion-exchange group are arranged in a random or block fashion, and the polymer in the polymer layer 20a in closest proximity to the polymer electrolyte membrane 10 is the polymer with the lowest block character of the repeating units (a) and (b).
摘要:
A membrane-electrode assembly (MEA) comprising an anode catalyst layer and cathode catalyst layer placed opposite each other, and a polymer electrolyte membrane formed between the anode catalyst layer and cathode catalyst layer, as well as a fuel cell comprising the same. Either or both the anode catalyst layer and cathode catalyst layer comprise: a catalyst-supported material, having at least one catalyst substance selected from among platinum and platinum-containing alloys and a support on which the catalyst substance is supported; and a hydrocarbon-based polymer electrolyte. The catalyst-supporting ratio of the catalyst-supported material is 60 wt % or greater.
摘要:
A membrane-electrode assembly comprising an anode catalyst layer and cathode catalyst layer placed each other, and a polymer electrolyte membrane formed between the anode catalyst layer and cathode catalyst layer. The polymer electrolyte membrane comprises: a hydrocarbon-based polymer electrolyte, and the anode catalyst layer and cathode catalyst layer both comprise a catalyst-supported material, having at least one catalyst substance selected from among platinum and platinum-containing alloys and a support on which the catalyst substance is supported; and a polymer electrolyte. Either or both the anode catalyst layer and cathode catalyst layer have a catalyst-supporting ratio of 60 wt % or greater in the catalyst-supported material.
摘要:
A membrane-electrode assembly for a solid polymer fuel cell, which comprises a mutually opposing anode catalyst layer and cathode catalyst layer with a polymer electrolyte membrane formed between the anode catalyst layer and cathode catalyst layer, wherein the anode catalyst layer and cathode catalyst layer each contain a catalyst and a hydrocarbon-based polymer electrolyte with an ion-exchange group. If the ion-exchange group density of the anode catalyst layer is represented as α [μeq/cm2] and the ion-exchange group density of the cathode catalyst layer is represented as β [μeq/cm2], then α and β satisfy the following relational expressions (1), (2) and (3). β/α>1.0 (1) α
摘要:
A membrane-electrode assembly 1 having an anode catalyst layer 20 and cathode catalyst layer 30 that are mutually opposing and a polymer electrolyte membrane 10 formed between the anode catalyst layer 20 and cathode catalyst layer 30, wherein the anode catalyst layer 20 is composed of a plurality of ion-exchange layers 20a and 20b with different layer ion-exchange capacities, and of the plurality of ion-exchange layers 20a and 20b, ion-exchange layer A (20a) having the smallest layer ion-exchange capacity is situated more toward the polymer electrolyte membrane 10 side than ion-exchange layer B (20b) having the largest layer ion-exchange capacity, and the ratio of the layer ion-exchange capacity of the ion-exchange layer B (20b) with respect to the layer ion-exchange capacity of the ion-exchange layer A (20a) is 1.7 or greater.
摘要:
A polymer electrolyte emulsion wherein a polymer electrolyte particle is dispersed in a dispersing medium, wherein a polymer electrolyte contained in the polymer electrolyte particle is a block copolymer consisting of a segment having an acidic group and a segment without substantially ion exchange group, is provided.
摘要:
Provided is a polymer electrolyte emulsion, wherein a polymer electrolyte particle is dispersed in a dispersing medium, a zeta potential at the measurement temperature of 25° C. being in a range of −50 mV to −300 mV.Also, provided is a polymer electrolyte emulsion, wherein a polymer electrolyte particle is dispersed in a dispersing medium, an ion exchange capacity of a solid material obtained by removing a volatile substance from the polymer electrolyte emulsion being 1.5 to 3.0 meq/g.
摘要:
A process for producing a polymer electrolyte emulsion having the following steps (1) and (2) is provided. Step (1): a step of dissolving a polymer electrolyte in a solvent comprising a good solvent for the polymer electrolyte to prepare a polymer electrolyte solution having a polymer electrolyte concentration of 0.1 to 10% by weight. Step (2): a step of mixing the polymer electrolyte solution 10 obtained in the step (1), and a poor solvent for the polymer electrolyte at a ratio of 4 to 99 parts by weight of the poor solvent based on 1 part by weight of the polymer electrolyte solution. In addition, a process for producing a polymer 15 electrolyte emulsion comprising separating a polymer electrolyte dispersion in which a polymer electrolyte particle is dispersed in a dispersing medium, with a membrane is provided.
摘要:
A method for producing a membrane-electrode-gas diffusion layer-gasket assembly 30, having a cathode sealing step in which a cathode side gasket 6 is formed on the edges of a cathode side gas diffusion layer 4 and cathode catalyst layer 2, and an anode sealing step in which an anode side gasket 7 is formed on the edges of an anode side gas diffusion layer 5 and anode catalyst layer 3, in a membrane-electrode-gas diffusion layer assembly 20, wherein the thickness C1 of the cathode side gasket 6 used in the cathode sealing step is in the following relationship with A1 as the thickness of the cathode catalyst layer 2 and B1 as the thickness of the cathode side gas diffusion layer 4. (A1+B1)/C1≧1.2 (1)
摘要:
A process for producing a polymer electrolyte emulsion having the following steps (1) and (2) is provided. Step (1): a step of dissolving a polymer electrolyte in a solvent comprising a good solvent for the polymer electrolyte to prepare a polymer electrolyte solution having a polymer electrolyte concentration of 0.1 to 10% by weight. Step (2): a step of mixing the polymer electrolyte solution obtained in the step (1), and a poor solvent for the polymer electrolyte at a ratio of 4 to 99 parts by weight of the poor solvent based on 1 part by weight of the polymer electrolyte solution. In addition, a process for producing a polymer electrolyte emulsion comprising separating a polymer electrolyte dispersion in which a polymer electrolyte particle is dispersed in a dispersing medium, with a membrane is provided.