摘要:
A plasma display device having an improved electrode structure that is capable of improving a contrast of the plasma display panel while decreasing a discharge firing voltage is provided. A plasma display panel according to an embodiment of the invention includes first and second substrates disposed opposite to each other, barrier ribs arranged in a space between the first substrate and the second substrate to define at least one discharge cell, address electrodes formed along a first direction, and display electrodes formed along a second direction intersecting the first direction. The display electrodes include bus electrodes formed extending in the second direction, expansion electrodes that extend toward the center of each discharge cell from the bus electrodes and face each other in the discharge cell with a discharge gap interposed therebetween, and auxiliary electrodes located at front ends of the expansion electrodes opposite to each other.
摘要:
A plasma display device having an improved electrode structure that is capable of improving a contrast of the plasma display panel while decreasing a discharge firing voltage is provided. A plasma display panel according to an embodiment of the invention includes first and second substrates disposed opposite to each other, barrier ribs arranged in a space between the first substrate and the second substrate to define at least one discharge cell, address electrodes formed along a first direction, and display electrodes formed along a second direction intersecting the first direction. The display electrodes include bus electrodes formed extending in the second direction, expansion electrodes that extend toward the center of each discharge cell from the bus electrodes and face each other in the discharge cell with a discharge gap interposed therebetween, and auxiliary electrodes located at front ends of the expansion electrodes opposite to each other.
摘要:
A plasma display panel is provided in which a sustain discharge is induced in response to an opposed discharge generated between a pair of electrodes, thereby reducing a discharge firing voltage and improving efficiency. The plasma display panel includes a first substrate and a second substrate disposed to face each other, a space between the first substrate and the second substrate being divided into a discharge cell, a phosphor layer formed in the discharge cell, an address electrode formed on the first substrate in a first direction, and a first electrode and a second electrode formed on the first substrate in a second direction crossing the first direction. The first electrode and the second electrode are electrically isolated from the address electrode and corresponding to the discharge cell to face each other with a space therebetween. A shape of the first electrode is substantially different from a shape of the second electrode.
摘要:
A plasma display panel includes a plurality of discharge cells used to realize the display of images by gas discharge. The plasma display panel is divided into a display region where images are displayed and a non-display region where display does not occur. The plasma display panel includes first electrodes, second electrodes, and third electrodes intersecting the first and second electrodes. Fourth and fifth electrodes are formed in the non-display region spaced apart from each other. In a method of driving a plasma display panel, a voltage is applied at least one time to each of the fourth and fifth electrodes prior to applying a scan voltage to the second electrode that is scanned lastly among the second electrodes.
摘要:
An improved plasma display panel is provided that may reduce a discharge firing voltage while simultaneously improving discharge efficiency. The plasma display panel may include a first substrate substantially paralleling an opposite second substrate across a predetermined gap, wherein the gap is divided into a discharge cell. A phosphor layer may be formed in the discharge cell. An address electrode may be formed on the first substrate to extend along a first direction. A first electrode and second electrode may be formed on the first substrate, and a degree that a portion of at least one of the first electrode or the second electrode proximate the second substrate protrudes toward a center of the discharge cell may differ from a degree that another portion of the at least one of the first electrode or the second electrode proximate the first substrate protrudes toward the center of the discharge cell.
摘要:
A plasma display panel is provided in which a sustain discharge is induced in response to an opposed discharge generated between a pair of electrodes, thereby reducing a discharge firing voltage and improving efficiency. The plasma display panel includes a first substrate and a second substrate disposed to face each other, a space between the first substrate and the second substrate being divided into a discharge cell, a phosphor layer formed in the discharge cell, an address electrode formed on the first substrate in a first direction, and a first electrode and a second electrode formed on the first substrate in a second direction crossing the first direction. The first electrode and the second electrode are electrically isolated from the address electrode and corresponding to the discharge cell to face each other with a space therebetween. A shape of the first electrode is substantially different from a shape of the second electrode.
摘要:
A Plasma Display Panel (PDP) includes: first and second substrates arranged opposite to each other; address electrodes arranged parallel to each other on the first substrate; barrier ribs arranged in a space between the first and second substrates to divide a plurality of discharge cells; phosphor layers respectively arranged within the discharge cells; first and second electrodes arranged on the second substrate corresponding to the respective discharge cells, the first and second electrodes extending in a direction crossing the address electrodes; and third and fourth electrodes, separated from the first and second electrodes, and projecting toward the first substrate in a direction away from the second substrate, the third and fourth electrodes facing each other with a space therebetween.
摘要:
A plasma display panel capable of increasing a luminous efficiency while decreasing discharge firing voltage while easily generating an address discharge by generating a sustain discharge as facing discharge. The discharge sustain electrodes are on barrier ribs between the two substrates. One of the sustain discharge electrodes extends between discharge cells and the other extends through discharge cells dividing discharge cells into two portions. Each discharge sustain electrode is surrounded by a dielectric material and also a non-transparent MgO protective layer. These electrodes are formed to be tall and narrow to allow for superior facing discharge potential.
摘要:
A plasma display panel includes first and second substrates, address electrodes formed on the first substrate, display electrodes formed on the second substrate, barrier ribs formed between the first and second substrates to define discharge cells, each of which acts as a subpixel, and phosphor layers deposited in the discharge cells to form red, green, and blue subpixels. The ends of each subpixel have a first width, and a center area of each subpixel has a center width. The center area of one of the red, green, or blue subpixels is formed having a second width that is smaller than the first width, and the center area of another one of the red, green, or blue subpixels is formed having a third width that is larger than the first width.
摘要:
A plasma display panel capable of increasing a luminous efficiency while decreasing discharge firing voltage while easily generating an address discharge by generating a sustain discharge as facing discharge. The discharge sustain electrodes are on barrier ribs between the two substrates. One of the sustain discharge electrodes extends between discharge cells and the other extends through discharge cells dividing discharge cells into two portions. Each discharge sustain electrode is surrounded by a dielectric material and also a non-transparent MgO protective layer. These electrodes are formed to be tall and narrow to allow for superior facing discharge potential.