Abstract:
The present invention provides a communications system, a base station, a user equipment, and a signaling transmission method. The system includes: a first base station and a second base station. User data transmission exists between the first base station and a UE; the first base station performs control signaling interaction with the UE by using a first signaling radio bearer; and the second base station performs control signaling interaction with the UE by using an SRB0, an SRB1, or an SRB2, where the first signaling radio bearer is different from the SRB0, the SRB1, and the SRB2. The technical solutions of the present invention can solve a problem of configuring a radio resource of an air interface connection between an enhancement-layer base station and a UE.
Abstract:
The present invention relates to the field of communications technologies and provides a relay node handover method. The method includes: receiving, by a target base station, a handover request sent by a source base station serving a relay node; acquiring, by the target base station, first transport network layer TNL information from the source base station; and establishing, by the target base station, a connection with the relay node according to the first TNL information. The present invention further provides a base station and a communication system. The present invention may implement the handover of a relay node from a source base station to a target base station, thereby ensuring the establishment of a connection between the relay node and the target base station.
Abstract:
A mobility load balance processing method includes: sending, by a donor base station DBS, indication information to a relay node RN of the donor base station DBS, where the donor base station DBS uses the indication information to instruct the relay node RN to perform mobility load balance processing to hand over at least one user equipment UE in a cell of the relay node RN to a neighboring cell. A relay node, a donor base station, and a communication apparatus are also disclosed. Through UE handover, a cell to which a UE is attached can be adjusted, so that load balance between cells is achieved after an RN is introduced. In this way, network resource utilization is maximized, and system capacity and system performance are improved.
Abstract:
A traffic bearer mapping method includes: obtaining attribute information of a traffic data flow of a user; selecting a relay transmission tunnel according to the attribute information of the traffic data flow of the user; and mapping the received traffic data flow to the relay transmission tunnel for transmission, where the relay transmission tunnel includes a relay link radio bearer Un RB or a bearer including the Un RB. Transmission of a traffic data flow in an LTE-A network after a relay node is introduced into is implemented, thereby ensuring quality of service of multi-service.
Abstract:
The present invention discloses a method for configuring a relay node subframe, including: a relay node (RN) sends an RN subframe configuration request for at least one component carrier (CC) to a base station, where the RN subframe configuration request for one or more CCs is used to request for RN subframe configuration for at least one CC; the RN receives the RN subframe configuration information for the at least one CC sent by the base station; and the RN subframe configuration information for the at least one CC is obtained through configuration performed by the base station after the base station receives an RN subframe configuration request for the at least one CC. The present invention also discloses a corresponding apparatus. According to a solution of the present invention, an RN subframe may be configured for a CC when carrier aggregation and RN are deployed in an integrated manner.
Abstract:
According to a communication method and a base station that are provided in embodiments of the present invention, the base station transmits a broad beam that covers a sector of the base station and narrow beams whose coverage areas completely fall within a coverage area of the broad beam, which implements that under a premise that a coverage area of the sector of the base station maintains unchanged by using the broad beam, enhanced coverage of the sector is further achieved by using the narrow beams, thereby improving spectral efficiency. In the solutions, a sector coverage area of the broad beam transmitted by the base station still maintains unchanged, and therefore, a coverage relationship between sectors is not affected. In addition, neither an additional site backhaul resource nor additional standardization support is required in the solutions.
Abstract:
According to a communication method and a base station that are provided in embodiments of the present invention, the base station transmits a broad beam that covers a sector of the base station and narrow beams whose coverage areas completely fall within a coverage area of the broad beam, which implements that under a premise that a coverage area of the sector of the base station maintains unchanged by using the broad beam, enhanced coverage of the sector is further achieved by using the narrow beams, thereby improving spectral efficiency. In the solutions, a sector coverage area of the broad beam transmitted by the base station still maintains unchanged, and therefore, a coverage relationship between sectors is not affected. In addition, neither an additional site backhaul resource nor additional standardization support is required in the solutions.
Abstract:
The present invention provides a handover method. An access node obtains mobility management entity pool MME pool information which is sent by a donor station of the access node and is used for identifying a mobility management entity MME to which a user equipment UE is attached. The access node initiates handover for the UE according to the MME pool information used for identifying the MME to which the UE is attached. The present invention further provides a communication device and a communication system.
Abstract:
According to a communication method and a base station that are provided in embodiments of the present invention, the base station transmits a broad beam that covers a sector of the base station and narrow beams whose coverage areas completely fall within a coverage area of the broad beam, which implements that under a premise that a coverage area of the sector of the base station maintains unchanged by using the broad beam, enhanced coverage of the sector is further achieved by using the narrow beams, thereby improving spectral efficiency. In the solutions, a sector coverage area of the broad beam transmitted by the base station still maintains unchanged, and therefore, a coverage relationship between sectors is not affected. In addition, neither an additional site backhaul resource nor additional standardization support is required in the solutions.
Abstract:
According to a communication method and a base station that are provided in embodiments of the present invention, the base station transmits a broad beam that covers a sector of the base station and narrow beams whose coverage areas completely fall within a coverage area of the broad beam, which implements that under a premise that a coverage area of the sector of the base station maintains unchanged by using the broad beam, enhanced coverage of the sector is further achieved by using the narrow beams, thereby improving spectral efficiency. In the solutions, a sector coverage area of the broad beam transmitted by the base station still maintains unchanged, and therefore, a coverage relationship between sectors is not affected. In addition, neither an additional site backhaul resource nor additional standardization support is required in the solutions.