Abstract:
A sensing element for electromagnetic wave detection, electrical radiography imaging system applying the element and method thereof is provided. The sensing element may include a substrate, an active component on the substrate, a plurality of first electrodes on the substrate, a plurality of second electrodes on the substrate, a first blocking layer, a photo-conversion layer on the first blocking layer, and a third electrode on the photo-conversion layer. The plurality of first electrodes is coupled together. The plurality of first electrodes is interlaced with the plurality of second electrodes and is coupled together. The first blocking layer is on the active component, the plurality of first electrodes, and the plurality of second electrodes. The photo-conversion layer is for absorbing electromagnetic wave transmitted through an object being imaged by a radiography imaging system and generates electric charges collected by the plurality of first and second electrodes, and the third electrodes.
Abstract:
The present disclosure provides an optical readout imaging system may include first electrode, a thin film disposed on the first electrode, a biomolecule transfer layer disposed on the thin film, and a second electrode disposed on the biomolecule transfer layer. The present disclosure also provides a biochemical detection method using the optical readout imaging system.
Abstract:
A touch device, a processor and a touch signal accessing method thereof are provided. The touch signal accessing method of the touch device includes the following steps. A current touch point is received. Whether a spatial continuity is smaller than a spatial threshold, and a time continuity is smaller than a time threshold are determined. If the spatial continuity is smaller than the space threshold and the time continuity is smaller than the time threshold, then the current touch point is added to a temporary touch point set and a count value is accumulated. Whether the current touch point is a significance point is determined. If the current touch point is the significance point, a touch point reporting procedure is performed.
Abstract:
A pixel circuit, an active sensing array, a sensing device, and a driving method thereof are provided. The pixel circuit includes a sensing transistor, a reset transistor, and a storage capacitor. The sensing transistor is electrically connected to a sensing element and a data line. The reset transistor is electrically connected to a first scan line and the sensing transistor. The storage capacitor is electrically connected to the sensing transistor and a second scan line. During a compensation period, the reset transistor is turned on in response to a first scanning pulse from the first scan line, so that the sensing transistor is connected into a diode configuration, and the storage capacitor charges and discharges to a threshold voltage of the sensing transistor through the sensing transistor having the diode configuration in response to switching of a level of the data line.
Abstract:
A pixel circuit, an active sensing array, a sensing device, and a driving method thereof are provided. The pixel circuit includes a sensing transistor, a reset transistor, and a storage capacitor. The sensing transistor is electrically connected to a sensing element and a data line. The reset transistor is electrically connected to a first scan line and the sensing transistor. The storage capacitor is electrically connected to the sensing transistor and a second scan line. During a compensation period, the reset transistor is turned on in response to a first scanning pulse from the first scan line, so that the sensing transistor is connected into a diode configuration, and the storage capacitor charges and discharges to a threshold voltage of the sensing transistor through the sensing transistor having the diode configuration in response to switching of a level of the data line.