Abstract:
Described herein is a device comprising a plurality of first reaction electrodes arranged in an array, the plurality of first reaction electrodes configured to be exposed to a solution and having a capacitance; first circuitry configured to controllably connect the plurality of first reaction electrodes to a bias source and controllably disconnect the plurality of first reaction electrodes from the bias source; and second circuitry configured to measure a rate of charging or discharging of the capacitance. Also described herein is a method of using this device to sequence DNA.
Abstract:
Described herein is a device comprising: a plurality of first reaction electrodes arranged in an array, the plurality of first reaction electrodes configured to be exposed to a fluid and having a capacitance; first circuitry configured to controllably set the plurality of first reaction electrode to a predetermined voltage and allow the capacitance of the plurality of first reaction electrode to charge or discharge through the fluid; and second circuitry configured to measure a rate of charging or discharging of the capacitance of the plurality of first reaction electrodes. Also described herein is a method of using this device to sequence DNA.
Abstract:
An embodiment includes a sensor comprising a substrate die; a photonic ring resonator (RR) on the substrate die; a polymer, on the RR, having an affinity to a chemical analyte; a photonic waveguide on the substrate die and coupled to the RR; a laser, on the substrate die and coupled to the waveguide, to emit optical energy that operates with the RR at a resonance wavelength; and a photodetector, on the substrate die and coupled to the waveguide, to detect a change in refractive index (RI) of the RR operating with the optical energy in response to the polymer coupling to the analyte. Other embodiments are described herein.