Abstract:
Light and/or Inactive state connectivity and/or autonomous mobility techniques are contemplated. A WTRU may, for example, have an inactive/idle mode, a light connected/loosely connected/Inactive mode and/or a connected/fully connected/Active mode. A WTRU in light connected mode may have a WTRU context stored in a RAN. A WTRU may perform an area monitoring procedure while in light connected state. A WTRU may engage in autonomous mobility during light connectivity. A WTRU may move within a logical area (e.g., a RAN paging area), perhaps without notifying the network. The WTRU may provide notice when it has moved outside a logical area (e.g., update RAN paging area). Mobility in light connected state may be network controlled (e.g., to enable handover when data transfer may be allowed and/or ongoing). A WTRU may be reachable during a light connectivity state. A WTRU may engage in autonomous mobility during light connectivity and/or an Inactive state.
Abstract:
Methods and apparatuses are described herein that facilitate mesh network communication by a millimeter wave base stations (mBs) or WTRUs as nodes of a directional mesh network with other nodes of the directional mesh network. The mB or WTRU may include a directional antenna configured to transmit and receive signals in specific directions during the mesh network communication to define a directional mesh network. The mBs or WTRUs may transmit transmission request messages to neighbor nodes, wherein the transmission request messages include transmission slot allocation bitmaps and channel quality indicator information (CQI). Then response messages from the neighbor nodes may be received, wherein the response messages include receive slot allocation bitmaps and resource allocation decisions. The mBs or WTRUs may then update their transmission slot allocation bitmaps based on the received response messages and transmit data packets in specific directions based on the updated transmission slot allocation bitmap.
Abstract:
A method and apparatus for joint routing and distributed scheduling in a directional mesh network includes receiving feedback for multiple candidate paths from at least one neighbor node, Semi-static and instantaneous metrics are determined based upon the received feedback. Routing from a first node to a destination node is determined based upon the semi-static and instantaneous metrics, and a transmission is routed in accordance with the determined route from the first node to the destination node.
Abstract:
Techniques may be used for interference measurement and management in directional mesh networks, including centralized and/or distributed approaches. A centralized node, such as an operations and maintenance (OAM) center, may use feedback from nodes in the mesh network to partition the nodes in the mesh network into clusters based on interference levels. Interference measurement reports may be used by the centralized node to update cluster membership. An initiating node in the mesh network may use topographical information to generate an initial interference cluster, and interference measurement frame (IMF) scheduling information may be used to schedule transmissions within the interference clusters. Techniques for opportunistic measurement campaigns, simultaneous measurement campaigns, link failure detection, and link re-acquisition in directional mesh networks may also be used.
Abstract:
Method, apparatus and systems are disclosed. In one representative embodiment, a method may be implemented by a wireless transmit/receive unit (WTRU) for communication via a network access point (NAP). The method may include the WTRU receiving from the NAP a set of preambles and corresponding propagation delay related thresholds and determining propagation delay related information associated with a distance between the WTRU and the NAP or a location in a coverage of the NAP. The method may further include selecting a subset of preambles from the set of preambles based on the determined propagation delay related information, randomly selecting a preamble from the selected subset of preambles, and sending the randomly selected preamble to the NAP.
Abstract:
Methods, apparatus and systems are disclosed. One method may include a wireless transmit/receive unit (WTRU) receiving a transmission including a data unit (DU) on a first set of resources. The WTRU may select an artificial intelligence (AI) filter based on the first set of resources and input the DU or a part of the DU to the selected AI filter. The WTRU may perform AI filtering on the inputted DU or part thereof to output any of: a set of AI-based transmission parameters or an AI-processed DU. The AI-processed DU may include: a first portion of the DU processed by the AI filter and a second portion of the DU processed by a rule-based component, or the DU processed by the AI filter. The WTRU may transmit any of: the AI-processed DU using a set of rule-based transmission parameters, or a rule-based DU using the AI-based transmission parameters.
Abstract:
Systems, methods, and instrumentalities are disclosed for connectivity supervision and recovery. A WTRU may supervise its capability to transmit and receive data, including in the absence of a control channel (e.g. grant-less transmission). A supervision framework may permit a WTRU to supervise, for example, quality of a feedback channel, quality of reciprocal resources and/or transmission attempts. A supervision process may be a function of a control channel structure or WTRU state. A supervision process may be associated with a quality of service. A supervision process may be based on WTRU transmission for energy/resource efficient operation. Multiple Recovery procedures may be defined. A recovery procedure may be a function of a supervision process. A recovery procedure may be optimized for low latency services. Recovery procedures may involve dedicated resources for recovery, transition to light connection, grant-less resource, etc. User plane recovery may include reuse of layer 2 context, data replication to companion MAC instances, etc. Control plane recovery may use RAN paging, WTRU triggered multi-connectivity, etc. A recovery procedure for a supervision process associated with a beam process may include WTRU triggering beam training/beam refinement, etc.
Abstract:
Device discovery at long ranges using directional antenna patterns for both transmission and reception of discovery beacon messages and discovery beacon response messages. Omnidirectional band transmissions to assist aiming a directional antenna are also described. Further, discovery beacons that include only those information elements which are necessary for device discovery are discussed, as well as separate scheduling beacons. The discovery beacon may include more robust encoding to increase discovery range or may be transmitted using a narrower channel to improve signal to noise ratio.
Abstract:
A method and apparatus for association in a mesh network may be disclosed. A method in a new node may include performing a discovery procedure with a plurality of peer nodes in the mesh network, initiating a temporary association procedure with each peer node, selecting a set of peer nodes from the plurality of peer nodes based on a selection algorithm at least based on a signal-to-interference and noise ratio (SINR) with each peer node and an interference impact of each peer node, and performing a final association with the selected set of peer nodes.