Abstract:
A detecting method for a workpiece surface includes the following steps. Firstly, a workpiece is provided with a first environment, wherein the first environment has a first environmental temperature higher than a first saturation temperature corresponding to an environmental-relative humidity. Then, the workpiece is provided with a second environment, wherein the second environment has a second environmental temperature lower than the first environmental temperature, such that a itself-temperature of the workpiece reduces to a mist temperature, wherein the mist temperature is substantially equal to or higher than the second environmental temperature. Then, the workpiece is provided with a mist environment, wherein the mist environment has a mist-saturation temperature corresponding to a mist-environmental relative humidity is equal to or higher than the mist temperature for misting a surface of the workpiece. Then, the surface of the misted workpiece is detected.
Abstract:
A detecting method for a workpiece surface includes the following steps. Firstly, a workpiece is provided with a first environment, wherein the first environment has a first environmental temperature higher than a first saturation temperature corresponding to an environmental-relative humidity. Then, the workpiece is provided with a second environment, wherein the second environment has a second environmental temperature lower than the first environmental temperature, such that a itself-temperature of the workpiece reduces to a mist temperature, wherein the mist temperature is substantially equal to or higher than the second environmental temperature. Then, the workpiece is provided with a mist environment, wherein the mist environment has a mist-saturation temperature corresponding to a mist-environmental relative humidity is equal to or higher than the mist temperature for misting a surface of the workpiece. Then, the surface of the misted workpiece is detected.
Abstract:
A method for playing a three-dimensional video is provided, which includes the following steps. A disparity velocity or a disparity acceleration for at least one continuous video in the three-dimensional video is calculated. A visual fatigue estimating value of a viewer is calculated according to the disparity velocity or the disparity acceleration. A subsequent playback of the three-dimensional video is controlled according to the visual fatigue estimating value.
Abstract:
A screen printing film and a surface modification method of the same are provided. The method includes providing a substrate having a PVA film on at least one surface of the substrate. The surface of the substrate is modified by generating a heating source and a plasma source, wherein a heating temperature to the substrate is between 100° C. and 500° C. The step of generating the heating source may be prior to, after, or simultaneous with the step of generating the plasma source.
Abstract:
The present disclosure discloses a method for suturing 3D coordinate information. The method includes disposing a correction block on a test platform; capturing first 3D coordinate information represented by a first viewing angle and second 3D coordinate information represented by a second viewing angle from the correction block; determining a first center coordinate of the first 3D coordinate information and a second center coordinate of the second 3D coordinate information; superimposing the first 3D coordinate information to the second 3D coordinate information to form first overlap 3D coordinate information; suturing the first 3D coordinate information into the second 3D coordinate information to form a first 3D coordinate suturing result according to an iterative closet point algorithm; and determining a first transformation relation of the first viewing angle versus the second viewing angle according to the first 3D coordinate information and the first 3D coordinate suturing result.
Abstract:
A method for playing a three-dimensional video is provided, which includes the following steps. A disparity velocity or a disparity acceleration for at least one continuous video in the three-dimensional video is calculated. A visual fatigue estimating value of a viewer is calculated according to the disparity velocity or the disparity acceleration. A subsequent playback of the three-dimensional video is controlled according to the visual fatigue estimating value.