Abstract:
This disclosure relates to a User Equipment (UE), comprising: a transceiver, configured to receive a Downlink (DL) transmission from a base station (BS) and to transmit an Uplink (UL) transmission to the BS; and a controller, configured to determine a decoding confidence of the BS based on a decoding confidence metric with respect to the received DL transmission and to generate a power scaling for the UL transmission based on the determined decoding confidence, wherein the transceiver is configured to transmit the UL transmission based on the power scaling generated by the controller.
Abstract:
A signal processing device includes a determiner configured to determine if a codeword included in a data signal corresponds to a reference codeword included in a first set of reference codewords or a second set of reference codewords; a first estimator configured to estimate a first channel quality metric value for the data signal based on a first channel quality metric, if the codeword corresponds to a reference codeword included in the first set of reference codewords, wherein the first channel quality value is smaller than a reference channel quality metric value for the data signal, wherein the reference channel quality metric value for the data signal results from a channel quality estimation based on a predetermined channel quality metric; and a second estimator configured to estimate a second channel quality metric value for the data signal based on a second channel quality metric, if the codeword corresponds to a reference codeword included in the second set of reference codewords, wherein the second channel quality value is equal to or larger than the reference channel quality metric value for the data signal.
Abstract:
The disclosure relates to a mobile communication device circuitry, comprising: a radio receiver configured to receive a plurality of channel state information (CSI) measurement requests, each CSI measurement request triggering a CSI measurement; and a processor configured to process the plurality of CSI measurement triggers within a CSI reporting period according to a CSI computation scheduling which is based on a multi-service priority queue of multi-size jobs, each job corresponding to a respective CSI measurement trigger.
Abstract:
A correction circuit (200) for providing at least one correction parameter (206) for correcting channel state information includes: a first input (201) for receiving at least one transport performance indicator (202) indicating a transport performance of data received over a radio channel; a second input (203) for receiving channel state information (204); and an output (205) for providing the at least one correction parameter (206) based on a relationship between the at least one transport performance indicator (202) and the channel state information (204).
Abstract:
The disclosure relates to a mobile communication device circuitry, comprising: a radio receiver configured to receive a plurality of channel state information (CSI) measurement requests, each CSI measurement request triggering a CSI measurement; and a processor configured to process the plurality of CSI measurement triggers within a CSI reporting period according to a CSI computation scheduling which is based on a multi-service priority queue of multi-size jobs, each job corresponding to a respective CSI measurement trigger.
Abstract:
A signal processing device includes a determiner configured to determine if a codeword included in a data signal corresponds to a reference codeword included in a first set of reference codewords or a second set of reference codewords; a first estimator configured to estimate a first channel quality metric value for the data signal based on a first channel quality metric, if the codeword corresponds to a reference codeword included in the first set of reference codewords, wherein the first channel quality value is smaller than a reference channel quality metric value for the data signal, wherein the reference channel quality metric value for the data signal results from a channel quality estimation based on a predetermined channel quality metric; and a second estimator configured to estimate a second channel quality metric value for the data signal based on a second channel quality metric, if the codeword corresponds to a reference codeword included in the second set of reference codewords, wherein the second channel quality value is equal to or larger than the reference channel quality metric value for the data signal.
Abstract:
A mobile communication device is described comprising a receiver configured to receive, for each of a plurality of transmit beam directions, a reference signal transmitted based on the transmit beam direction, wherein each transmit beam direction has at least one allowable precoder, a determiner configured to determine, for each transmit beam direction, a reception quality of the reference signal transmitted based on the transmit beam direction, a preselector configured to preselect, from the plurality of transmit beam directions, a subset of transmit beam directions based on a comparison of the determined reception qualities, an evaluator configured to determine, for each transmit beam direction of the subset, an evaluation of the performance of the allowable precoders of the transmit beam direction, a selector configured to select, from the subset, a beam direction for communication, based on the evaluations and a controller configured to establish communications based on the selected beam direction.
Abstract:
A correction circuit (200) for providing at least one correction parameter (206) for correcting channel state information includes: a first input (201) for receiving at least one transport performance indicator (202) indicating a transport performance of data received over a radio channel; a second input (203) for receiving channel state information (204); and an output (205) for providing the at least one correction parameter (206) based on a relationship between the at least one transport performance indicator (202) and the channel state information (204).
Abstract:
A mobile communication device is described comprising a receiver configured to receive, for each of a plurality of transmit beam directions, a reference signal transmitted based on the transmit beam direction, wherein each transmit beam direction has at least one allowable precoder, a determiner configured to determine, for each transmit beam direction, a reception quality of the reference signal transmitted based on the transmit beam direction, a preselector configured to preselect, from the plurality of transmit beam directions, a subset of transmit beam directions based on a comparison of the determined reception qualities, an evaluator configured to determine, for each transmit beam direction of the subset, an evaluation of the performance of the allowable precoders of the transmit beam direction, a selector configured to select, from the subset, a beam direction for communication, based on the evaluations and a controller configured to establish communications based on the selected beam direction.
Abstract:
An apparatus of a user equipment (UE) may include memory and processing circuitry coupled to the memory. The processing circuitry may be configured to estimate a communication channel for a multi-carrier signal based on a received reference signal, the multi-carrier signal aggregating a plurality of component carriers. During a transmission time interval of the multi-carrier signal, the UE can perform a global search over a beam search space to obtain a beam index recommendation for a component carrier of the plurality of component carriers. The beam index recommendation corresponds to a maximized channel quality metric of the estimated communication channel and is indicative of a beam grid within the beam search space. The UE can perform a localized search of a subset of the beam search space to obtain a second beam index recommendation for a second component carrier of the plurality of component carriers.