Abstract:
An apparatus includes a housing, a cable guide, a first cable, and a second cable. The housing is coupled to a shaft of a medical instrument. The cable guide is coupled to the housing, and defines a shaft opening into a passageway defined by the shaft. A first guide groove and a second guide groove are defined by the cable guide, with each of the first guide groove and the second guide groove being splayed outward from the shaft opening. The first cable is routed within the first guide groove and through the shaft opening, and is configured to slide within the first guide groove. The second cable is routed within the second guide groove and through the shaft opening, and is configured to slide within the second guide groove.
Abstract:
An apparatus includes a housing, a cable guide, a first cable, and a second cable. The housing is coupled to a shaft of a medical instrument. The cable guide is coupled to the housing, and defines a shaft opening into a passageway defined by the shaft. A first guide groove and a second guide groove are defined by the cable guide, with each of the first guide groove and the second guide groove being splayed outward from the shaft opening. The first cable is routed within the first guide groove and through the shaft opening, and is configured to slide within the first guide groove. The second cable is routed within the second guide groove and through the shaft opening, and is configured to slide within the second guide groove.
Abstract:
An apparatus includes a housing, a cable guide, a first cable, and a second cable. The housing is coupled to a shaft of a medical instrument. The cable guide is coupled to the housing, and defines a shaft opening into a passageway defined by the shaft. A first guide groove and a second guide groove are defined by the cable guide, with each of the first guide groove and the second guide groove being splayed outward from the shaft opening. The first cable is routed within the first guide groove and through the shaft opening, and is configured to slide within the first guide groove. The second cable is routed within the second guide groove and through the shaft opening, and is configured to slide within the second guide groove.
Abstract:
An instrument sterile adapter couples a surgical instrument and an instrument carriage. The instrument sterile adapter includes an instrument plate that provides a first surface to receive the surgical instrument and a latch plate joined to the instrument plate. The latch plate includes a second surface to receive the instrument carriage and latch structures. Each latch structure has a carriage latch arm that extends away from the second surface of the latch plate and an instrument latch arm joined to the carriage latch arm. The instrument latch arm extends through the instrument plate and away from the first surface of the instrument plate. A connecting member flexibly connects the carriage latch arm and the instrument latch arm to a remainder of the latch plate. The connecting member may be perpendicular to the latch arms. The latch arms may engage fixed locking surfaces in the instrument carriage and the surgical instrument.
Abstract:
A force transmission mechanism for a teleoperated surgical instrument may include a gear, a push/pull drive element, and a connection element. The push/pull drive element may be configured to transmit force to actuate an end effector of the surgical instrument and to rotate with a shaft of the surgical instrument when the shaft is rotated by the force transmission mechanism. The connection element may operatively couple the gear and the push/pull drive element. The connection element may be configured to convert rotational movement of the gear to a substantially linear movement of the push/pull drive element. The connection element may be configured to rotate with the push/pull drive element and relative to the gear.
Abstract:
A surgical apparatus includes a cannula and a surgical instrument. The cannula includes a curved longitudinal axis along at least a portion of its length. The surgical instrument includes an elongated shaft having a distal end and a proximal end, and an end effector coupled to the distal end of the elongated shaft. At least a portion of the end effector is configured to contact an inner surface of the cannula during insertion of the surgical instrument into the curved cannula. A threshold galling stress between the portion of the end effector and an inner surface of the curved cannula is at least 10,000 pounds per square inch.