Abstract:
Methods and apparatus for accessing and treating regions of the body are disclosed herein. Using an endoscopic device having an automatically controllable proximal portion and a selectively steerable distal portion, the device generally may be advanced into the body through an opening. The distal portion is selectively steered to assume a selected curve along a desired path within the body which avoids contact with tissue while the proximal portion is automatically controlled to assume the selected curve of the distal portion. The endoscopic device can then be used for accessing various regions of the body which are typically difficult to access and treat through conventional surgical techniques because the device is unconstrained by “straight-line” requirements. Various applications can include accessing regions of the brain, thoracic cavity, including regions within the heart, peritoneal cavity, etc., which are difficult to reach using conventional surgical procedures.
Abstract:
A tunable ablation delivery device is disclosed. The tunable ablation delivery device includes a housing and a detection element on the housing for detecting a physiological indication. The tunable ablation delivery device further includes an ablation element disposed within the housing. An opening in the housing is positioned relative to the ablation element to facilitate a treatment using the ablation element modality.
Abstract:
Methods and apparatus for accessing and treating regions of the body are disclosed herein. Using an endoscopic device having an automatically controllable proximal portion and a selectively steerable distal portion, the device generally may be advanced into the body through an opening. The distal portion is selectively steered to assume a selected curve along a desired path within the body which avoids contact with tissue while the proximal portion is automatically controlled to assume the selected curve of the distal portion. The endoscopic device can then be used for accessing various regions of the body which are typically difficult to access and treat through conventional surgical techniques because the device is unconstrained by “straight-line” requirements. Various applications can include accessing regions of the brain, thoracic cavity, including regions within the heart, peritoneal cavity, etc., which are difficult to reach using conventional surgical procedures.
Abstract:
Methods and apparatus for accessing and treating regions of the body are disclosed herein. Using an endoscopic device having an automatically controllable proximal portion and a selectively steerable distal portion, the device generally may be advanced into the body through an opening. The distal portion is selectively steered to assume a selected curve along a desired path within the body which avoids contact with tissue while the proximal portion is automatically controlled to assume the selected curve of the distal portion. The endoscopic device can then be used for accessing various regions of the body which are typically difficult to access and treat through conventional surgical techniques because the device is unconstrained by “straight-line” requirements. Various applications can include accessing regions of the brain, thoracic cavity, including regions within the heart, peritoneal cavity, etc., which are difficult to reach using conventional surgical procedures.
Abstract:
A system for determining the shape of a surgical instrument includes an elongate instrument body having a selectively steerable distal tip, a pair of automatically controlled segments proximal to the selectively steerable distal tip, and a joint that couples the pair of adjacent automatically controlled segments together. An actuator changes an angle of the joint and a position encoder provides information associated with the joint angle. A controller receives the information associated with the angle of the joint and generates a three dimensional model of a shape of the instrument. A method for determining the three dimensional shape of an instrument includes providing axial position data to a controller, providing angular position data to the controller from a respective segment controller, and generating a three-dimensional model of a shape of said instrument using the axial position data and the angular position data.