Abstract:
A first system manager operating on a first node of a distributed routing system, receives data indicating a current state of the distributed routing system. The first system manager may determine, based at least in part on the current state of the distributed routing system and a set of rules for an application, an updated state of the distributed routing system. Furthermore, the first node may send the updated state of the distributed routing system to a second node of the distributed routing system. Responsive to receiving the updated state of the distributed routing system, a second system manager on the second node may modify a state of the second node. Modifying the state of the second node may comprise at least one of: starting the application on the second node, stopping the application on the second node, or modifying a state of the application on the second node.
Abstract:
A first system manager operating on a first node of a distributed computing system, receives data indicating a current state of the distributed computing system. The first system manager may determine, based at least in part on the current state of the distributed computing system and a set of rules for an application, an updated state of the distributed computing system. Furthermore, the first node may send the updated state of the distributed computing system to a second node of the distributed computing system. Responsive to receiving the updated state of the distributed computing system, a second system manager on the second node may modify a state of the second node. Modifying the state of the second node may comprise at least one of: starting the application on the second node, stopping the application on the second node, or modifying a state of the application on the second node.
Abstract:
A network device obtains a data package associated with an ISSU procedure and determines, based on the data package, that a control plane of the network device is to be rebooted to facilitate performance of the ISSU procedure. The network device causes, based on determining that the control plane is to be rebooted, a plurality of applications of the network device to stop executing on the network device and a control plane state of the network device to be frozen. The network device then causes the ISSU procedure to be performed. The network causes, based on causing the ISSU procedure to be performed, the control plane state of the network device to be restored and the plurality of applications to resume executing on the network device.
Abstract:
In general, techniques are described for providing a hierarchical naming scheme used to propagate state information within network devices. A network device comprising a topic database and a processor may be configured to perform the techniques. The topic database may be configured to store a hierarchical naming scheme that associates objects representative of the state information to hierarchically arranged topics. The processor may be configured to associate consuming components within the network device to the hierarchically arranged topics, and operate as a producer component to publish an object to one of the hierarchically arranged topics. The processor may also be configured to propagate the published object to one of the consumer components associated with the one of the hierarchically arranged topics.
Abstract:
The disclosed computer-implemented method for facilitating dependency-ordered delivery of data sets to applications within distributed systems may include (1) receiving, at a queue of an application running within a distributed system, a data set from at least one other application running within the distributed system, (2) determining that the data set has a dependency on at least one other data set that has yet to arrive, (3) gating the data set at the queue due at least in part to the dependency, (4) receiving, at the queue, the other data set from the other application, (5) determining that the dependency has been satisfied, and then (6) delivering the data set and the other data set to the application to enable the application to process the data set and the other data set in accordance with the dependency. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A first system manager operating on a first node of a distributed routing system, receives data indicating a current state of the distributed routing system. The first system manager may determine, based at least in part on the current state of the distributed routing system and a set of rules for an application, an updated state of the distributed routing system. Furthermore, the first node may send the updated state of the distributed routing system to a second node of the distributed routing system. Responsive to receiving the updated state of the distributed routing system, a second system manager on the second node may modify a state of the second node. Modifying the state of the second node may comprise at least one of: starting the application on the second node, stopping the application on the second node, or modifying a state of the application on the second node.
Abstract:
A first system manager operating on a first node of a distributed computing system, receives data indicating a current state of the distributed computing system. The first system manager may determine, based at least in part on the current state of the distributed computing system and a set of rules for an application, an updated state of the distributed computing system. Furthermore, the first node may send the updated state of the distributed computing system to a second node of the distributed computing system. Responsive to receiving the updated state of the distributed computing system, a second system manager on the second node may modify a state of the second node. Modifying the state of the second node may comprise at least one of: starting the application on the second node, stopping the application on the second node, or modifying a state of the application on the second node.