Abstract:
A connector assembly includes a housing, a mating array, and a self-alignment subassembly. The housing is joined to a first circuit board and includes a header portion that moves in a mating direction toward a second circuit board. The mating array is joined to the header portion and includes a terminal. The mating array is moveable in the mating direction to couple the terminal with a mating terminal of the second circuit board. The self-alignment subassembly is disposed between the header portion and the mating array. The self-alignment subassembly applies a floating force on the mating array that permits alignment of the terminal of the mating array with the mating terminal while the mating array is moved in directions oriented approximately perpendicular to the mating direction. The self-alignment subassembly also applies a loading force on the mating array in the mating direction that couples the terminal of the mating array with the mating terminal.
Abstract:
An electrical connector assembly includes a connector having a connector housing and contacts held by the connector housing, where the contacts defining a separable mating interface for mating with a mating component. An actuator engages the contacts and is movable between an actuated position and an unactuated position. The contacts are deflected relative to the connector housing when the actuator is moved to the actuated position. An actuation device is configured to move the actuator between the actuated position and the unactuated position.
Abstract:
A connector configured to communicatively couple different components. The connector includes a base frame that extends along a longitudinal axis between a pair of frame ends and moveable first and second mating arrays comprising respective mating surfaces having terminals arranged thereon. The connector also includes a coupling mechanism supported by the base frame. The coupling mechanism holds the first and second mating arrays and moves the first and second mating arrays between retracted and engaged positions. The first and second mating arrays are spaced apart from a select component when in the corresponding retracted position. The first and second mating arrays are communicatively coupled to the select component when in the corresponding engaged position. The coupling mechanism initiates movement of the first mating array from the retracted position toward the engaged position while the second mating array remains stationary with respect to the base frame.
Abstract:
A connector assembly includes a housing, a connector interface, and an actuator. The housing extends from a front end to a back end and includes an elongated channel extending through the housing along an actuation axis disposed between the front and back ends. The connector interface is joined with the front end of the housing and is configured to be electrically joined with a circuit board when the connector interface is moved away from the front end and mates with the circuit board. The actuator is disposed within the channel of the housing and includes a ramp angled toward the front end of the housing. The connector interface mates with the circuit board by moving the actuator along the actuation axis to engage the ramp with the connector interface and move the connector interface toward the circuit board.
Abstract:
An interconnect assembly for interconnecting first and second electrical components includes a substrate having opposed first and second surfaces and a first array of contacts on the first surface for engaging corresponding elements on the first electrical component. The first array of contacts defines a compressible interface that mates with the first electrical component. The first array of contacts includes signal contacts transferring data signals across the compressible interface and the first array of contacts includes a combination of power contacts that jointly convey power across the compressible interface. The interconnect assembly also includes a second array of contacts on the second surface for engaging corresponding elements on the second electrical component. The second array of contacts having signal contacts electrically connected to the signal contact of the first array of contacts and power contacts electrically connected to the power contacts of the second array of contacts.
Abstract:
A connector assembly including a connector that has a mating surface with an array of connector terminals thereon. The mating surface interfaces with a side surface of a daughter card assembly when the daughter card assembly is moved to an engaged position. The array of connector terminals are configured to engage an array of card terminals of the daughter card assembly. The connector assembly also includes a guide assembly that has a guide channel and a cam member that slidably engages the guide channel to direct the daughter card assembly to an offset position. In the offset position, the side and mating surfaces form a non-orthogonal angle with respect to each other. The guide channel is configured to permit the daughter card assembly to be rotated about an axis of rotation so that the daughter card assembly moves from the offset position to the engaged position.
Abstract:
A connector assembly that includes a base frame that extends along a longitudinal axis between a pair of frame ends. The connector assembly also includes a moveable mating side that is supported by the base frame and extends in a longitudinal direction along the longitudinal axis. The mating side has a mating array of terminals configured to communicate data signals. The connector assembly also includes a power connector that is configured to establish an electrical connection. The power connector is coupled to the mating side. Also, the connector assembly includes a coupling mechanism that is supported by the base frame and is operatively coupled to the mating side. The coupling mechanism is configured to be actuated to move the mating side between retracted and engaged positions in a mating direction with respect to the longitudinal axis.
Abstract:
A connector assembly includes a connector housing configured to be coupled to a primary circuit board. A connector is held within the connector housing. The connector has a connector circuit board having a mating surface and a cable surface. The mating surface has mating contacts configured to be mated to corresponding mating contacts of a secondary circuit board. The cable surface has cable contacts. Cables extend between a first end and a second end. The first end of each cable is coupled to corresponding cable contacts of the connector circuit board. The second end of each cable is configured to be coupled to a cable contact on the primary circuit board or a second connector assembly on the primary circuit board.
Abstract:
A flexible circuit assembly including a pair of mating panels. Each of the mating panels has an engagement face and a power contact. The circuit assembly also includes adjacent first and second flex interconnects that mechanically and electrically couple the mating panels. The first and second flex interconnects extend alongside each other and have respective interior surfaces. The first and second flex interconnects are stacked with respect to each other such that the interior surfaces face each other and define a heat-dissipating interspace therebetween. The circuit assembly also includes a plurality of power conductors that extend through the first and second flex interconnects between the mating panels. The power conductors are electrically parallel to one another between the power contacts. At least one of the power conductors extends proximate to the interior surface of one of the first and second flex interconnects.
Abstract:
A connector assembly that includes a base frame extending along a longitudinal axis between a pair of frame ends. The connector assembly also includes a moveable side that is supported by the base frame and extends in a direction along the longitudinal axis. The moveable side includes a mating array of terminals. The connector assembly also includes a flex connection that is communicatively coupled to the mating array. The flex connection and the mating array are configured to transmit data signals. The connector assembly also includes a coupling mechanism that is supported by the base frame and is operatively coupled to the moveable side. The coupling mechanism is configured to be actuated to move the moveable side between retracted and engaged positions along a mating direction.