摘要:
A digital signal modulator modulates a digital input signal to drive a load, such as an opposed current amplifier or other opposed current converter. The combinations of frequency relationships and digital signal modulator elements provide significant digital signal processing capabilities and flexible output signal timing. In one embodiment, a digital signal modulator modulates a digital input signal. Even and odd samples of the input signal propagate along two respective channels (signal paths), which include further digital processing capabilities, such as pulse width modulation, to generate output signals appropriate for the topology of a load. Additionally, a bias signal may be modulated with the digital input signal. By utilizing digital signal processing to modulate the input signal, various processing technologies are applied to the input signal. For example, noise shaping may be implemented using a delta-sigma modulator as an input stage to the two channels.
摘要:
A digital input signal is modulated using multiple digital signal modulators operating at a variety of clock frequencies and clock frequency phase relationships to drive a load, such as an opposed current amplifier or other opposed current converter. The combinations of frequency relationships and digital signal modulator elements provide significant digital signal processing capabilities and flexible output signal timing. In one embodiment, a digital input signal, which may be biased, is modulated by multiple digital signal modulators to generate corresponding output signals. The corresponding output signals are utilized to drive a load, such as a half bridge, opposed current amplifier and to produce a single output signal. By adjusting the phase relationships between the clock frequencies, various output signal characteristics are achieved. Additionally, by utilizing digital signal processing to modulate the input signal, various processing technologies are applied to the input signal. For example, noise shaping may be implemented using delta-sigma modulators as one stage in digital signal modulators.
摘要:
Systems and methods are provided for converting input data streams having variable input sample rates to an output sample rate, which systems and methods are used in processing the data streams. In one embodiment, a system includes a clock source, a counter configured to count cycles for a corresponding data stream, and a data processor. The data processor is configured to read the number of cycles counted by the counter between received frame sync signals and to convert the first data stream to the predetermined output sample rate based on the corresponding number of cycles counted.
摘要:
Systems and methods for converting a data stream from a first sample rate to a second sample rate, where the data is received in bursts. In one embodiment, a method includes receiving bursty audio data on a first input line and receiving synchronization data on a second input line that is separate from the first input line. An input sample rate is then estimated for the received audio data based on the received synchronization data and the audio data is converted to an output sample rate. The input sample rate is determined by counting samples received in a time interval and potentially low-pass filtering the result. The audio data may be in packetized, parallel, or other forms, and the synchronization data may include individual signals, such as pulses or bits received at regular or irregular intervals.
摘要:
Systems and methods for performance improvements in digital switching amplifiers using a low delay corrector. In one embodiment, a digital pulse width modulation (PWM) amplifier includes a signal processing plant configured to receive and process an input audio signal. The amplifier also includes a low delay corrector configured to receive signals output by the plant. The output of the low delay corrector is added to the input audio signal as feedback. The plant may consist of a modulator and power switch, a noise shaper, or any other type of plant. An analog-to-digital converter (ADC) may be provided to convert the output audio signal to a digital signal. Filtering may be implemented before or after the ADC, and a decimator may be placed after the ADC if it is an oversampling ADC.
摘要:
Systems and methods are provided for converting input data streams having variable input sample rates to an output sample rate, which systems and methods are used in processing the data streams. In one embodiment, a system includes a clock source, a counter configured to count cycles for a corresponding data stream, and a data processor. The data processor is configured to read the number of cycles counted by the counter between received frame sync signals and to convert the first data stream to the predetermined output sample rate based on the corresponding number of cycles counted.
摘要:
Systems and methods for performance improvements in digital switching amplifiers using low-pass filtering to reduce noise and distortion. In one embodiment, a digital pulse width modulation (PWM) amplifier includes a signal processing plant configured to receive and process an input audio signal. The amplifier also includes a low-pass filter configured to filter audio signals output by the plant. The filtered output of the plant is added to the input audio signal as feedback. The plant may consist of a modulator and power switch, a noise shaper, or any other type of plant. An analog-to-digital converter (ADC) may be provided to convert the output audio signal to a digital signal. Filtering may be implemented before or after the ADC, and a decimator may be placed after the ADC if it is an oversampling ADC.
摘要:
Systems and methods for minimizing errors due to component variation in switching amplifiers utilizing power supply feed forward techniques. One embodiment comprises a digital PWM amplifier having an amplification subsystem for receiving a digital audio signal and producing an analog output signal. The amplifier includes a power supply feed-forward path configured to modify the digital audio signal based on a power supply measurement. The feed-forward path includes an analog filter configured to filter the power supply measurement, as well as correction circuitry configured to correct component mismatch errors introduced by the filter. The power supply measurement may be a power supply difference, a power supply common mode, or both. In either case, the power supply measurement is corrected by multiplying the measurement by an appropriately scaled power supply difference.
摘要:
Systems and methods in which an ultrasonic signal is introduced into an audio signal before the audio signal is amplified by a switching amplifier. The added ultrasonic signal (e.g., a tone at half the amplifier's switching frequency) shifts the signals input to a set of power switches so that they do not switch nearly simultaneously. The ultrasonic signal causes the output current to be well defined to eliminate dead time distortion at low signal levels. Adding the tone ultrasonic signal causes the distortion to shift to an amplitude greater than zero. Signals that exceed this amplitude will experience the distortion, but the distortion will be less noticeable than in lower-amplitude signals. Signals that do not exceed this amplitude will not experience the distortion at all. Adding an ultrasonic signal may also draw energy away from the switch frequency and its harmonics to interference with AM radio reception.
摘要:
Systems and methods for over-current protection in all-digital amplifiers using low-cost current sensing mechanisms. An over-current hard clipping unit receives a digital audio signal, clips the signal according to a clip level, and provides the signal to a modulator. The modulator modulates the signal to produce, e.g., a PWM signal and provides the modulated signal to an output stage which generates an output current to drive a speaker. An over-current sensing unit is compares the output current to a threshold value and generates a binary signal indicating whether the output current exceeds the threshold value. The hard clipping unit receives the binary signal and ramps down the clip level during time periods in which the binary signal indicates that the output current exceeds the threshold. When the binary signal indicates that the output current does not exceed the threshold value, the hard clipping unit ramps up the clip level.