摘要:
The present invention relates to direct volume rendering based on a light model applied to a 3D array of information data samples. Gradients are first estimated for the individuals samples, and a simple shading is done on the samples with low gradient, i.e. homogenous areas.
摘要:
The invention relates to a system (100) for obtaining information relating to segmented volumetric medical image data, the system comprising: a display unit (110) for displaying a view of the segmented volumetric medical image data on a display; an indication unit (115) for indicating a location on the displayed view; a trigger unit (120) for triggering an event; an identification unit (125) for identifying a segmented anatomical structure comprised in the segmented volumetric medical image data based on the indicated location on the displayed view in response to the triggered event; and an execution unit (130) for executing an action associated with the identified segmented anatomical structure, thereby obtaining information relating to the segmented volumetric medical image data. The action executed by the execution unit (130) may be displaying a name of the segmented anatomical structure, a short description of the segmented anatomical structure, or a hint on a potential malformation or malfunction of the segmented anatomical structure. Thus, the system (100) allows obtaining valuable information relating to the volumetric medical image data viewed by a physician on the display, thereby assisting the physician in medical diagnosing.
摘要:
A method, computer program and device for creating a viewing protocol for medical images is described. At least a first site of interest is identified in a medical imaging data set captured from the patient. Patient record data or computer assisted detection information can be used to identify the site of interest, which may be a potential lesion. A viewing protocol for displaying medical images to a user is planned. The viewing protocol includes a viewing path along which an image of the site of interest will be displayed. The viewing protocol also includes a trigger associated with the site of interest. When the trigger event is encountered the dynamic mode of image display is reconfigured to dynamically highlight the site of interest. The viewing protocol can then be used to control the display of images so as to provide, for example, a virtual endoscope.
摘要:
A method, computer program and device for creating a viewing protocol for medical images is described. At least a first site of interest is identified in a medical imaging data set captured from the patient. Patient record data or computer assisted detection information can be used to identify the site of interest, which may be a potential lesion. A viewing protocol for displaying medical images to a user is planned. The viewing protocol includes a viewing path along which an image of the site of interest will be displayed. The viewing protocol also includes a trigger associated with the site of interest. When the trigger event is encountered the dynamic mode of image display is reconfigured to dynamically highlight the site of interest. The viewing protocol can then be used to control the display of images so as to provide, for example, a virtual endoscope.
摘要:
High frequency signals cannot be reconstructed properly from sampled data if the sampling frequency lies below the Nyquist rate. The invention addresses this problem by choosing few additional sample points along a trajectory intersecting the region comprising the high frequency signals, such as an edge. Intermediate rendering data is used to determine the additional sample points. Therefore, according to an exemplary embodiment of the present invention, 4 adaptively chosen sample points per pixel may provide a visual quality comparable to 16 times super-sampling, but at a much lower computational cost.
摘要:
High frequency signals cannot be reconstructed properly from sampled data if the sampling frequency lies below the Nyquist rate. The invention addresses this problem by choosing few additional sample points along a trajectory intersecting the region comprising the high frequency signals, such as an edge. Intermediate rendering data is used to determine the additional sample points. Therefore, according to an exemplary embodiment of the present invention, 4 adaptively chosen sample points per pixel may provide a visual quality comparable to 16 times super-sampling, but at a much lower computational cost.
摘要:
Medical imaging modalities generate increasingly more and very large three-dimensional data sets. According to an exemplary embodiment of the present invention, a three-dimensional data set of an object of interest is interactively visualized with a varying sampling rate in an image. Advantageously, a focus area may be moved by a user interactively during rendering, wherein the sampling rate of a particular part of the image is defined by its relative position to the focus area. Advantageously, this may allow for an improvement of an overall rendering performance.
摘要:
Medical imaging modalities generate increasingly more and very large three-dimensional data sets. According to an exemplary embodiment of the present invention, a three-dimensional data set of an object of interest is interactively visualized with a varying sampling rate in an image. Advantageously, a focus area may be moved by a user interactively during rendering, wherein the sampling rate of a particular part of the image is defined by its relative position to the focus area. Advantageously, this may allow for an improvement of an overall rendering performance.
摘要:
In real-time three-dimensional imaging the choice of the visualization method and orientation is crucial for intervention success. The key question is what to ignore and what to show in real-time applications, where user control is not appropriate. The invention addresses this problem by visualizing an intervention (caused by a user) to an object of interest without the requirement of an interactive input by the user. Advantageously, according to an exemplary embodiment of the present invention, parameters for a visualization procedure are automatically chosen during data acquisition which may allow for an efficient tracking of the actual orientation and relative position of the structure with respect to the object of interest.
摘要:
In real-time three-dimensional imaging the choice of the visualization method and orientation is crucial for intervention success. The key question is what to ignore and what to show in real-time applications, where user control is not appropriate. An intervention (caused by a user) to an object of interest is visualized without the requirement of an interactive input by the user. Parameters for a visualization procedure are automatically chosen during data acquisition which may allow for an efficient tracking of the actual orientation and relative position of the structure with respect to the object of interest.