Abstract:
In general, techniques are described for configuring a provider edge (PE) network device of an Ethernet virtual private network (EVPN) to use a common traffic engineering label (e.g., MPLS label) for different EVPN route types associated with the same EVPN. In some examples, the techniques include sending a first layer three (L3) control plane message that indicates a label-switched network protocol label that corresponds to a first EVPN route type, wherein the first L3 control plane message indicates that a first PE network device is reachable in the L2 segment. The techniques may include performing L2 address learning to determine at least one L2 address associated with the layer two segment of the EVPN. The techniques may include sending a second L3 control plane message that indicates the same label included in the first L3 control plane message corresponds to a second EVPN route type.
Abstract:
An example network system includes a layer two (L2) device and a layer three (L3) device. The L2 device includes a control unit is configured to determine a preferred network path from a first L2 network in which the L2 device resides to an intermediate L3 network in which the L3 device resides that couples the first L2 network to a second L2 network having a second L2 device. The control unit includes a management endpoint (MEP) module. The MEP module executes an operations, administration, and management (OAM) protocol to monitor the first L2 network and output an L2 frame in accordance with the OAM protocol to the L3 device to notify the L3 device that it is within the preferred network path. A MEP module of the L3 device executes an OAM protocol that outputs L2 frames to the L2 device indicating the status of the L3 network.
Abstract:
In general, techniques are described for configuring a provider edge (PE) network device of an Ethernet virtual private network (EVPN) to use a common traffic engineering label (e.g., MPLS label) for different EVPN route types associated with the same EVPN. In some examples, the techniques include sending a first layer three (L3) control plane message that indicates a label-switched network protocol label that corresponds to a first EVPN route type, wherein the first L3 control plane message indicates that a first PE network device is reachable in the L2 segment. The techniques may include performing L2 address learning to determine at least one L2 address associated with the layer two segment of the EVPN. The techniques may include sending a second L3 control plane message that indicates the same label included in the first L3 control plane message corresponds to a second EVPN route type.
Abstract:
An example network system includes a layer two (L2) device and a layer three (L3) device. The L2 device includes a control unit is configured to determine a preferred network path from a first L2 network in which the L2 device resides to an intermediate L3 network in which the L3 device resides that couples the first L2 network to a second L2 network having a second L2 device. The control unit includes a management endpoint (MEP) module. The MEP module executes an operations, administration, and management (OAM) protocol to monitor the first L2 network and output an L2 frame in accordance with the OAM protocol to the L3 device to notify the L3 device that it is within the preferred network path. A MEP module of the L3 device executes an OAM protocol that outputs L2 frames to the L2 device indicating the status of the L3 network.
Abstract:
Data traffic loss in a an Ethernet Ring that is multihomed, in an active-standby manner, to a VPLS transport network (such as a Border Gateway Protocol (BGP) multihomed Ethernet Ring, an MC-LAG multihomed Ethernet Ring, or some other type of active-standby multihomed Ethernet Ring, etc.) (ring) is avoided. The exemplary multihomed ring running Ethernet Ring Protection (ERP) protocol includes a Ring Protection Link (RPL), a first node and a second node linked with a designated border router and a standby border router of the network, respectively. The data traffic loss in the multihomed ring is avoided by (i) receiving an indication that the link between the first node and the designated border router has failed; and (ii) invoking, responsive to the received indication, an ERP Media Access Control (MAC)-flush in the ring, even in the absence of a failed link in the ring and without activating the specified RPL. The ERP MAC-flush causes subsequent data packets from each of the plurality of nodes in the ring to be forwarded to the standby border router via the second node.
Abstract:
An example network system includes a layer two (L2) device and a layer three (L3) device. The L2 device includes a control unit is configured to determine a preferred network path from a first L2 network in which the L2 device resides to an intermediate L3 network in which the L3 device resides that couples the first L2 network to a second L2 network having a second L2 device. The control unit includes a management endpoint (MEP) module. The MEP module executes an operations, administration, and management (OAM) protocol to monitor the first L2 network and output an L2 frame in accordance with the OAM protocol to the L3 device to notify the L3 device that it is within the preferred network path. A MEP module of the L3 device executes an OAM protocol that outputs L2 frames to the L2 device indicating the status of the L3 network.
Abstract:
Data traffic loss in a an Ethernet Ring that is multihomed, in an active-standby manner, to a VPLS transport network (such as a Border Gateway Protocol (BGP) multihomed Ethernet Ring, an MC-LAG multihomed Ethernet Ring, or some other type of active-standby multihomed Ethernet Ring, etc.) (ring) is avoided. The exemplary multihomed ring running Ethernet Ring Protection (ERP) protocol includes a Ring Protection Link (RPL), a first node and a second node linked with a designated border router and a standby border router of the network, respectively. The data traffic loss in the multihomed ring is avoided by (i) receiving an indication that the link between the first node and the designated border router has failed; and (ii) invoking, responsive to the received indication, an ERP Media Access Control (MAC)-flush in the ring, even in the absence of a failed link in the ring and without activating the specified RPL. The ERP MAC-flush causes subsequent data packets from each of the plurality of nodes in the ring to be forwarded to the standby border router via the second node.
Abstract:
An example network system includes a layer two (L2) device and a layer three (L3) device. The L2 device includes a control unit is configured to determine a preferred network path from a first L2 network in which the L2 device resides to an intermediate L3 network in which the L3 device resides that couples the first L2 network to a second L2 network having a second L2 device. The control unit includes a management endpoint (MEP) module. The MEP module executes an operations, administration, and management (OAM) protocol to monitor the first L2 network and output an L2 frame in accordance with the OAM protocol to the L3 device to notify the L3 device that it is within the preferred network path. A MEP module of the L3 device executes an OAM protocol that outputs L2 frames to the L2 device indicating the status of the L3 network.
Abstract:
In general, techniques are described for providing control plane messaging in an active-active (or all-active) configuration of a multi-homed EVPN environment. In some examples, the techniques include receiving a control plane message comprising at least one address that identifies that second PE network device. The techniques may include configuring, based at least in part on the control plane message, a forwarding plane of a first PE network device to identify network packets having respective destination addresses that match the at least one address. The techniques may include determining that at least one address of the network packet matches the at least one address that identifies the second PE network device. The techniques may include, responsive to the determination, skipping a decrement of the Time-To-Live (TTL) value of the network packet, and forwarding the network packet to the second PE network device.
Abstract:
A first network device receives a control message at an interface from a second network device, wherein the first network device and the second network device use a multipoint service that provides layer two (L2) connectivity between L2 networks. The control message specifies one or more L2 addresses of customer network devices that are provided connectivity to an autonomous system by the second network device, wherein the control message identifies the L2 addresses as static L2 addresses that are to be persistently maintained at the first network device as reachable by the interface. In response to receiving the control message and by the first network device, the first network device stores the L2 addresses as persistently maintained static L2 addresses being reachable by the interface at which the control message was received.