Abstract:
The robot system includes work facilities and a central computer device. The work facilities comprise a robot, a robot controller. The robot controller includes a storage part which stores teaching information. The central computer device comprises a teaching information database, an information accepting part, a correlation determining part. The teaching information database stores a plurality of the teaching information in association with detection information of the sensor or processed information. The information accepting part accepts the detection information of a sensor of each work facility. The correlation determining part determines whether or not the plurality of teaching information stored includes teaching information comprising a predetermined correlation with respect to the detection information or the processed information corresponding thereto. The robot system further comprises a first transferring part. The first transferring part transfers specific the teaching information determined to comprise the correlation to the storage part.
Abstract:
A robot system according to an aspect of an embodiment includes a robot and a work bench. The robot has a plurality of joints including a first joint that is provided so as to be rotatable relative to an installation surface. On the work bench, a fixing part, by which a work member used in operations of the robot is fixed, is provided on a plate surface of a top plate with a rotation axis of the first joint serving as a normal line thereof, along a circular arc having a center at an intersection between the plate surface and the rotation axis.
Abstract:
A work cabinet includes a casing, an airflow adjuster, and a conveyer. The airflow adjuster is configured to adjust an airflow in an inner space of the casing. The conveyer is disposed in the casing and configured to convey a longitudinally continuous sheet so as to make the sheet pass below the inner space.
Abstract:
The robot system includes a first robot, a first robot controller, a loading information storage device, a second robot, and a second robot controller. The first robot holds and loads one or more target objects to form a loaded body. The first robot controller controls a movement of the first robot. The loading information storage device stores loading information of each target object loaded by the first robot. The second robot holds and unloads the one or more target objects from the loaded body. The second robot controller controls a movement of the second robot. The second robot controller comprises a first movement mode determining part. The first movement mode determining part determines a movement mode of the second robot based on the loading information of each target object. The second robot controller controls the movement of the second robot based on the movement mode.
Abstract:
An automatic preparation system according to an embodiment includes a case, a pressure regulator, and a plurality of robots. The case has a workspace inside thereof. The pressure regulator keeps a negative pressure inside the case relative to the outside. The robots are installed on a ceiling surface of the case and have respective arms. The robots bring the arms into cooperation to perform a preparation operation.
Abstract:
This disclosure discloses a robot system including one or more work facilities and a teaching information database. The work facilities comprise a robot and robot controller. The robot controller controls the movement of the robot based on teaching information stored in a storage part. The teaching information database stores a plurality of types of the teaching information associated with work information. Each work facility includes an interface device configured to receive an input of search condition information, to search teaching information highly relevant to the search condition information among the plurality of types of teaching information, and to receive a selection of desired teaching information among one or more sets of the teaching information hit in the search. The robot system further comprises a first transferring part configured to transfer the teaching information from the teaching information database to the storage part.
Abstract:
This disclosure discloses a robot system including one or more work facilities, and a central information processor. The work facilities comprise a robot, a robot controller, and a sensor. The robot performs predetermined work. The central information processor includes an information accepting part, an algorithm storage part, an information analysing part, and an analytical information output part. The information accepting part accepts detection information of the sensor of each work facility. The algorithm storage part stores a processing algorithm for the detection information. The information analysing part analyses the detection information accepted based on the processing algorithm stored in the algorithm storage part. Then analytical information output part outputs analytical information of the detection information to the robot controller of a corresponding the work facility. The robot controller controls a movement of the robot based on the analytical information.
Abstract:
An animal breeding system according to an embodiment includes a rack, a carrier robot, a thermo camera, and an instruction unit. The rack contains therein a cage for breeding an animal. The carrier robot includes a hand having a retention mechanism for the cage. The thermo camera is provided near the hand. The instruction unit instructs the carrier robot to perform an operation of taking the cage in and out from the rack while retaining the cage with the hand to carry the cage between the rack and a certain carrying position and an operation of bringing the thermo camera close to the cage in the rack to cause the thermo camera to capture the inside of the cage.
Abstract:
A robot cell according to an aspect of the embodiments includes a first surface part and a second surface part. A robot that performs a work by performing a predetermined operation is arranged on the first surface part. In the second surface part, a plurality of fixing portions that are used to fix a working unit used in the work by the robot is arranged at a predetermined position, and the working unit is fixed to the second surface part by using a fixing portion selected from the fixing portions.