Abstract:
A reduced-pressure, wound closure system is presented that generates a closing force on a surface wound and optionally provides reduced pressure to a body cavity or tissue site. The sealed contracting member, when placed under reduced pressure, generates the closing force. One illustrative system includes a first attachment member and a second attachment member, a sealed contracting member coupled to the first attachment member and the second attachment member, and wherein the closing force is generated between the first attachment member and the second attachment member when reduced pressure is supplied to the sealed contracting member. Other systems and methods are presented.
Abstract:
A reduced-pressure, wound closure system is presented that generates a closing force on a surface wound and optionally provides reduced pressure to a body cavity or tissue site. The sealed contracting member, when placed under reduced pressure, generates the closing force. One illustrative system includes a first attachment member and a second attachment member, a sealed contracting member coupled to the first attachment member and the second attachment member, and wherein the closing force is generated between the first attachment member and the second attachment member when reduced pressure is supplied to the sealed contracting member. Other systems and methods are presented.
Abstract:
A reduced-pressure, deep-tissue closure device for applying a closing force on a deep tissue includes a contractible matrix that is formed with a first plurality of apertures and which has a first side and a second, inward-facing side. The contractible matrix is for disposing proximate to the deep tissue. A reduced-pressure source is fluidly coupled to the contractible matrix and operable to deliver reduced pressure to the contractible matrix. When under reduced pressure, the contractible matrix grips the deep tissue adjacent the contractible matrix and provides a closing force on the deep tissue. A system and method are also presented.
Abstract:
A system for applying a treatment to a defect in one bone of two bones forming a joint that comprises a bladder for delivering a reduced pressure to the defect and for providing a positive pressure as bracing between the two bones of the joint is disclosed. A method for applying such treatment is also disclosed. A bladder for applying such treatment that comprises a reduced-pressure chamber and a bracing chamber is also disclosed.
Abstract:
A method of manufacturing a reduced-pressure abdominal treatment system for treating an open abdominal cavity is provided. In some embodiments, the reduced-pressure abdominal treatment system has an open-cavity treatment device for providing reduced-pressure treatment to an abdominal cavity; a deep-tissue closure device for applying a closing force on a deep-tissue wound; and a surface-wound closure subsystem for providing a closing force on a surface wound. The method of manufacturing may also include providing a reduced-pressure supply subsystem. A method of treatment using a reduced-pressure abdominal treatment system is also disclosed.
Abstract:
A reduced pressure treatment system includes a compressible chamber positionable beneath a foot of a user and being movable between an expanded position and a compressed position. The compressible chamber includes an inlet and an outlet. An inlet valve is in fluid communication with the inlet to prevent fluid within the compressible chamber from exiting the inlet, and an outlet valve is in fluid communication with the outlet to prevent fluid from entering the compressible chamber through the outlet. A biasing member is disposed within the compressible chamber to bias the compressible chamber toward the expanded position, and a manifold is positionable at a tissue site and in fluid communication with the inlet of the compressible chamber.