Abstract:
Disclosed is a method for carbon coating on lithium titanium oxide-based anode active material nanoparticles. The method includes (a) introducing a lithium precursor solution, a titanium precursor solution and a surface modifier solution into a reactor, and reacting the solutions under supercritical fluid conditions to prepare a solution including nanoparticles of an anode active material represented by Li4Ti5O12, (b) separating the anode active material nanoparticles from the reaction solution, and (c) calcining the anode active material nanoparticles to uniformly coat the surface of the nanoparticles with carbon. Further disclosed are carbon-coated lithium titanium oxide-based anode active material nanoparticles produced by the method. In the anode active material nanoparticles, lithium ions are transferred rapidly. In addition, the uniform carbon coating ensures high electrical conductivity, allowing the anode active material nanoparticles to have excellent electrochemical properties.
Abstract:
The present disclosure relates to a molybdenum carbide catalyst used in a process for preparing hydrocarbons, in particular diesel-grade hydrocarbons, from biooils and fatty acids released therefrom through hydrodeoxygenation and a method for preparing same.
Abstract:
Disclosed is a method for preparing a semi-furanic copolyamide containing at least one furanic dicarboxylic acid moiety and at least one aliphatic diamine moiety in the backbone. The method is based on solid-state polymerization. Particularly, the method uses a biomass-derived furanic dicarboxylic acid as a raw material. A semi-furanic copolyamide prepared by the method has molecular weight and color levels that are practically required in industrial applications. In addition, the semi-furanic copolyamide can replace fossil fuels due to its good thermal stability and is suitable for use as an environmentally friendly bioplastic.