Abstract:
Disclosed is a calcined carbon material for a magnesium battery anode. The calcined carbon material includes catalytic carbon nanotemplates having a network structure in which nanofibers are entangled three-dimensionally. The calcined carbon material can be used as a magnesium battery anode material. Also disclosed is a method for preparing the calcined carbon material.
Abstract:
Provided is a furnace for a transmission mode X-ray diffractometer and a transmission mode X-ray diffractometer using the same. The furnace for a transmission mode X-ray diffractometer includes a sample heating unit disposed adjacent to a quartz capillary accommodating a sample to heat the sample, and a main body disposed to surround the quartz capillary and the sample heating unit and having an insulating function for allowing the heated sample to maintain a thermal equilibrium state.
Abstract:
Disclosed is an anode material for a sodium secondary battery. The anode material includes a tin fluoride-carbon composite composed of a tin fluoride and a carbonaceous material. The anode material can be used to improve the charge/discharge capacity, charge/discharge efficiency, and electrochemical activity of a sodium secondary battery. Also provided are a method for preparing the anode material and a sodium secondary battery including the anode material.
Abstract:
There is provided a preparation method of a sodium vanadium oxide-based (Na1+xV1−xO2) anode material for a sodium ion secondary battery synthesized by mixing particles of precursors such as sodium carbonate (Na2CO3) and vanadium oxide (V2O3) and pyrolyzing a mixture in a mixed gas atmosphere composed of 90 mol % of nitrogen gas and 10 mol % of hydrogen gas through a solid-state reaction. The sodium vanadium oxide-based anode material prepared according to the present invention shows a small change in volume caused by an initial irreversible capacity and continuous charge/discharge reactions, and thus it is useful for providing a next-generation sodium ion secondary battery having stable charge/discharge characteristics and cycle performance.
Abstract translation:提供了通过混合前体如碳酸钠(Na 2 CO 3)和氧化钒(V 2 O 3)的颗粒合成的钠离子二次电池的钠钒氧化物(Na1 + xV1-xO2)阳极材料的制备方法,并将 通过固相反应在由90mol%的氮气和10mol%的氢气组成的混合气体气氛中进行混合。 根据本发明制备的基于氧化钒的阳极材料显示由初始不可逆容量和连续充放电反应引起的体积变化小,因此可用于提供具有稳定的下一代钠离子二次电池 充放电特性和循环性能。
Abstract:
Provided is a cathode material for a rechargeable magnesium battery, represented by the chemical formula of Ag2SxSe1-x (0≤x≤1), a highly stable cathode material and a rechargeable magnesium battery including the same. The cathode material for a rechargeable magnesium battery has a higher discharge capacity and higher discharge voltage as compared to a typical commercially available cathode material, Chevrel phase, and shows excellent stability in an electrolyte for a rechargeable magnesium battery including chloride ions. In addition, after evaluating the cycle life of the cathode material, the cathode material shows an excellent discharge capacity per unit weight after 500 charge/discharge cycles, and thus is useful for a cathode material for a rechargeable magnesium battery.
Abstract:
Provided are a cathode active material coated with a fluorine-doped spinel-structured lithium metal manganese oxide, a lithium secondary battery including the same, and a method for preparing the same. The cathode active material has improved chemical stability and provides improved charge/discharge characteristics at elevated temperature (55-60° C.) and high rate. The cathode active material allows lithium ions to pass through the coating layer with ease and is chemically stable, and thus may be used effectively as a cathode active material for a high-power lithium secondary battery.
Abstract:
Disclosed is an electrolyte solution for a magnesium rechargeable battery with a high ionic conductivity and a wide electrochemical window compared to the conventional electrolyte solution. The electrolyte solution is prepared by dissolving magnesium metal into the ethereal solution using combinations of metal chloride catalysts. The electrolyte solution can be applied to fabricate magnesium rechargeable batteries and magnesium hybrid batteries with a markedly increased reversible capacity, rate capability, and cycle life compared to those batteries employing the conventional electrolyte solution. Also disclosed is a method for preparing the electrolyte.