Abstract:
The present invention relates to a core-shell cobalt catalyst used for a Fischer-Tropsch synthesis reaction and a method for preparing the same. More particularly, it relates to a cobalt catalyst, which has a core-shell structure including a cobalt-supported and sintered alumina particle as a core and a zeolite powder coated on the surface of the alumina particle to a thickness of 50 μm or greater through mechanical alloying as a shell and is used to prepare hydrocarbons with high octane numbers through a Fischer-Tropsch synthesis reaction, and a method for preparing the same.
Abstract:
The present invention relates to a method for preparing a synthetic fuel on a vessel above a stranded gas field or an oil & gas field by a GTL-FPSO process, more particularly to a method for preparing a synthetic fuel with superior economic feasibility, productivity and efficiency using a compact GTL (gas to liquid) apparatus that can be used for a stranded gas field or an oil & gas field and an FPSO (floating production, storage and offloading) process under a condition optimized for the ratio of carbon dioxide in the stranded gas field or the oil & gas field and an apparatus for the same.
Abstract:
The present disclosure relates to a shell-and-multi-double concentric-tube reactor and a shell-and-multi-double concentric-tube heat exchanger, and to a shell- and-multi-double concentric-tube reactor and a shell-and-multi-double concentric-tube heat exchanger which provide a new type of reactor and a heat exchanger, thereby maximizing catalyst performance and improving performance of the reactor by optimizing heat exchange efficiency and a heat flow, uniformly distributing a reactant, and increasing a flow rate of the reactant, and accordingly making the reactor and the heat exchanger compact.
Abstract:
The present disclosure relates to a shell-and-multi-triple concentric-tube reactor and a shell-and-multi-triple concentric-tube heat exchanger, and to a shell-and-multi-triple concentric-tube reactor and a shell-and-multi-triple concentric-tube heat exchanger which provide a new type of reactor and heat exchanger, thereby maximizing catalyst performance and improving performance of the reactor by optimizing heat exchange efficiency and a heat flow, uniformly distributing a reactant, and increasing a flow rate of the reactant, and accordingly making the reactor and the heat exchanger compact.