Abstract:
The present invention relates to a method for preparing mannitol which includes performing the hydrogenation of fructose in the presence of a Cu-based nanocomposite catalyst, for example, a nanocomposite catalyst of CuO(x)/SiO2(100-x) (wherein x is a real number from 20 to 90), using butanol as a solvent.
Abstract:
The present disclosure relates to the preparation of a useful compound, which can be used as an intermediate for preparing an important compound in the industrial field from a homoserine-based compound, and provides a process for treating a homoserine-based compound, capable of mass-producing a useful compound from a homoserine-based compound in a simple manner with excellent efficiency.
Abstract:
Disclosed herein is polymer membrane for gas separation or concentration which contains a hybrid nanoporous material, an application thereof, and a manufacturing method thereof.Especially, the hybrid nanoporous material has a window size of 4 Å to 15 Å or has gas adsorption characteristics for a gas to be separated, which is different from those for other gases, and thus the present invention may provide the polymer membrane having improved gas permeation selectivity, an application thereof, and a manufacturing method thereof.
Abstract:
The present invention relates to a metal-organic framework (MOF) having a three-dimensional porous structure and being represented by the chemical formula of [Al8(OH)a(BTC)b(IPA)c(L)d], a preparation method therefor, and a use thereof as an adsorbent and a catalyst.
Abstract:
The present invention relates to an organic-inorganic hybrid nanoporous material, maintaining a nanoporous skeleton structure formed by coordination of an organic ligand containing an aromatic compound to a trivalent central metal ion, and further having an intramolecular acid anhydride functional group modified on the aromatic compound of the nanoporous skeleton structure, and thereby exhibits selectivity for olefins, and an adsorbent comprising the same. Specifically, the organic-inorganic hybrid nanoporous material of the present invention exhibits an excellent olefin-selective adsorption capacity through differences in adsorption equilibrium and adsorption rate, and thus can be usefully employed in the separation of C2-C4 hydrocarbons. Further, the olefins adsorbed to the organic-inorganic hybrid nanoporous material can be desorbed by purging of an inert gas which is not liquefied by way of mild vacuum conditions or compression, and thus, the organic-inorganic hybrid nanoporous material can be used to prepare olefins by separating C2-C4 hydrocarbon mixtures.
Abstract:
The present invention provides an energy-saving air dryer comprising: a compressor for compressing the air in the atmosphere to form compressed air; a heat exchanger which is disposed on one side of the compressor and recovers compression heat from the compressed air; a pre-filter which is disposed on one side of the heat exchanger and removes pollutants from the compressed air; a pair of adsorption towers which communicate with the pre-filter and are filled with an adsorbent, wherein dry air is formed when compressed air flows into the adsorption towers according to the opening and closing of a valve and moisture is adsorbed, or moisture is desorbed from the adsorbent when dry air retaining the compression heat recovered in the heat exchanger is transferred to the adsorption towers; and an after filter which extends from the one side of the adsorption towers and removes pollutants from the dry air from which moisture has been removed.
Abstract:
The present invention relates to a method and apparatus for preparation of lactide using a lactide purification process, comprising introducing an aqueous solution comprising lactic acid into a reactor filled with a catalyst and reacting the same to produce crude lactide vapor; and purifying the crude lactide vapor to produce lactide crystals, wherein a first purification comprises collecting and crystallizing the crude lactide vapor using a first solvent to produce lactide crystals, and separating the lactide crystal from a residue through filtration.
Abstract:
The present disclosure relates to a catalyst for preparing 1,2-pentanediol from furfural and/or furfuryl alcohol, and more particularly to a catalyst, which is configured such that a catalytically active metal containing both at least one transition metal and tin (Sn) is supported on a basic support and is capable of increasing reaction selectivity for 1,2-pentanediol, and a method of preparing 1,2-pentanediol using the same.