Fast image classification by vocabulary tree based image retrieval
    1.
    发明授权
    Fast image classification by vocabulary tree based image retrieval 有权
    基于词汇树的图像检索快速图像分类

    公开(公告)号:US08787682B2

    公开(公告)日:2014-07-22

    申请号:US13339240

    申请日:2011-12-28

    CPC classification number: G06K9/4676 G06K2009/4695

    Abstract: Systems and methods are disclosed to categorize images by detecting local features for each image; applying a tree structure to index local features in the images; and extracting a rank list of candidate images with category tags based on a tree indexing structure to estimate a label of a query image.

    Abstract translation: 公开了通过检测每个图像的局部特征来对图像进行分类的系统和方法; 应用树结构来索引图像中的局部特征; 以及基于树索引结构提取具有类别标签的候选图像的等级列表以估计查询图像的标签。

    Power control for home base station with GNSS receiver
    2.
    发明授权
    Power control for home base station with GNSS receiver 有权
    带GNSS接收机的家用基站的电源控制

    公开(公告)号:US08526993B2

    公开(公告)日:2013-09-03

    申请号:US12976870

    申请日:2010-12-22

    CPC classification number: G01S19/11 H04W52/143 H04W52/367

    Abstract: Embodiments herein include a method and a network node in a wireless communications network for controlling a maximum output power of the network node. The network node comprises a Global Navigation Satellite System (GNSS) receiver. The GNSS receiver receives signals from the GNSS. The method comprises determining whether a GNSS signal transmitted from the GNSS is considered detectable. If the GNSS signal is considered detectable, the method includes determining whether the GNSS signal is received directly from the GNSS or via a GNSS repeater. The method further includes selecting a power control method for controlling the maximum output power of the network node, based on at least one of the determination of whether the GNSS signal is considered detectable, and the determination of whether the GNSS signal is received directly from the GNSS or via the GNSS repeater.

    Abstract translation: 本文的实施例包括用于控制网络节点的最大输出功率的无线通信网络中的方法和网络节点。 网络节点包括全球导航卫星系统(GNSS)接收机。 GNSS接收机接收来自GNSS的信号。 该方法包括确定从GNSS发射的GNSS信号是否被认为是可检测的。 如果GNSS信号被认为是可检测的,则该方法包括确定GNSS信号是直接从GNSS接收还是经由GNSS中继器接收。 该方法还包括:基于确定GNSS信号是否被检测到的至少一个来选择用于控制网络节点的最大输出功率的功率控制方法,以及是否直接从 GNSS或GNSS中继器。

    FAST IMAGE CLASSIFICATION BY VOCABULARY TREE BASED IMAGE RETRIEVAL
    3.
    发明申请
    FAST IMAGE CLASSIFICATION BY VOCABULARY TREE BASED IMAGE RETRIEVAL 有权
    基于VOCABULARY TREE的图像检索快速图像分类

    公开(公告)号:US20120243789A1

    公开(公告)日:2012-09-27

    申请号:US13339240

    申请日:2011-12-28

    CPC classification number: G06K9/4676 G06K2009/4695

    Abstract: Systems and methods are disclosed to categorize images by detecting local features for each image; applying a tree structure to index local features in the images; and extracting a rank list of candidate images with category tags based on a tree indexing structure to estimate a label of a query image.

    Abstract translation: 公开了通过检测每个图像的局部特征来对图像进行分类的系统和方法; 应用树结构来索引图像中的局部特征; 以及基于树索引结构提取具有类别标签的候选图像的等级列表以估计查询图像的标签。

    Power supply selector and power supply selection method
    4.
    发明授权
    Power supply selector and power supply selection method 有权
    电源选择器和电源选择方法

    公开(公告)号:US08225125B2

    公开(公告)日:2012-07-17

    申请号:US13250126

    申请日:2011-09-30

    Abstract: In the field of electronic technologies, a power supply selector and a power supply selection method are provided. The power supply selector includes: a first selection module, configured to select a power supply from multiple candidate power supplies; a control module, coupled to the first selection module, and configured to use the power supply selected by the first selection module as a power supply, and compare voltages of the multiple candidate power supplies to generate a control signal of each candidate power supply; and a second selection module, coupled to the control module, and configured to select a power supply for output in the multiple candidate power supplies under the control of the control signal of each candidate power supply. The technical solution is used to select a power supply from multiple candidate power supplies.

    Abstract translation: 在电子技术领域中,提供电源选择器和电源选择方法。 电源选择器包括:第一选择模块,被配置为从多个候选电源中选择电源; 控制模块,耦合到第一选择模块,并且被配置为使用由第一选择模块选择的电源作为电源,并且比较多个候选电源的电压以产生每个候选电源的控制信号; 以及耦合到控制模块的第二选择模块,并且被配置为在每个候选电源的控制信号的控制下选择用于在多个候选电源中输出的电源。 该技术解决方案用于从多个候选电源中选择电源。

    SYSTEMS AND METHODS FOR DETERMINING IMAGE REPRESENTATIONS AT A PIXEL LEVEL
    5.
    发明申请
    SYSTEMS AND METHODS FOR DETERMINING IMAGE REPRESENTATIONS AT A PIXEL LEVEL 有权
    用于确定像素级的图像表示的系统和方法

    公开(公告)号:US20110299789A1

    公开(公告)日:2011-12-08

    申请号:US13109997

    申请日:2011-05-18

    Inventor: Yuanqing Lin Kai Yu

    CPC classification number: G06K9/6244 G06K9/4676

    Abstract: Systems and methods process an image having a plurality of pixels includes an image sensor to capture an image; a first-layer to encode local patches on an image region; and a second layer to jointly encode patches from the same image region.

    Abstract translation: 处理具有多个像素的图像的系统和方法包括用于捕获图像的图像传感器; 编码图像区域上的局部斑块的第一层; 以及第二层,以共同编码来自相同图像区域的斑块。

    METHOD AND SYSTEM FOR IMAGE CLASSIFICATION
    6.
    发明申请
    METHOD AND SYSTEM FOR IMAGE CLASSIFICATION 有权
    图像分类方法与系统

    公开(公告)号:US20110229045A1

    公开(公告)日:2011-09-22

    申请号:US12818156

    申请日:2010-06-18

    Applicant: Kai Yu

    Inventor: Kai Yu

    CPC classification number: G06K9/00664 G06K9/6223 G06K9/6269

    Abstract: Methods and systems are disclosed for image classification coding an image by nonlinearly mapping an image descriptor to form a high-dimensional sparse vector; spatially pooling each local region to form an image-level feature vector using a probability kernel incorporating a similarity metric of local descriptors; and classifying the image.

    Abstract translation: 公开了通过非线性映射图像描述符以形成高维稀疏矢量的图像分类编码图像的方法和系统; 使用包含局部描述符的相似性度量的概率核心空间汇集每个局部区域以形成图像级特征向量; 并分类图像。

    3D CONVOLUTIONAL NEURAL NETWORKS FOR AUTOMATIC HUMAN ACTION RECOGNITION
    7.
    发明申请
    3D CONVOLUTIONAL NEURAL NETWORKS FOR AUTOMATIC HUMAN ACTION RECOGNITION 有权
    3D自动人工神经网络识别

    公开(公告)号:US20110182469A1

    公开(公告)日:2011-07-28

    申请号:US12814328

    申请日:2010-06-11

    CPC classification number: G06K9/00335 G06K9/4628

    Abstract: Systems and methods are disclosed to recognize human action from one or more video frames by performing 3D convolutions to capture motion information encoded in multiple adjacent frames and extracting features from spatial and temporal dimensions therefrom; generating multiple channels of information from the video frames, combining information from all channels to obtain a feature representation for a 3D CNN model; and applying the 3D CNN model to recognize human actions.

    Abstract translation: 公开了系统和方法,以通过执行3D卷积来识别来自一个或多个视频帧的人类动作来捕获在多个相邻帧中编码的运动信息并从其空间和时间维度提取特征; 从视频帧生成多个信道,组合来自所有信道的信息以获得3D CNN模型的特征表示; 并应用3D CNN模型来识别人类的行为。

    LOCALITY-CONSTRAINED LINEAR CODING SYSTEMS AND METHODS FOR IMAGE CLASSIFICATION
    8.
    发明申请
    LOCALITY-CONSTRAINED LINEAR CODING SYSTEMS AND METHODS FOR IMAGE CLASSIFICATION 有权
    局部约束线性编码系统和图像分类方法

    公开(公告)号:US20110116711A1

    公开(公告)日:2011-05-19

    申请号:US12822424

    申请日:2010-06-24

    CPC classification number: G06K9/4671 G06K9/6223

    Abstract: Systems and methods are disclosed for classifying an input image by detecting one or more feature points on the input image; extracting one or more descriptors from each feature point; applying a codebook to quantize each descriptor and generate code from each descriptor; applying spatial pyramid matching to generate histograms; and concatenating histograms from all sub-regions to generate a final representation of the image for classification.

    Abstract translation: 公开了通过检测输入图像上的一个或多个特征点来对输入图像进行分类的系统和方法; 从每个特征点提取一个或多个描述符; 应用码本量化每个描述符并从每个描述符生成代码; 应用空间金字塔匹配来生成直方图; 以及从所有子区域连接直方图以生成用于分类的图像的最终表示。

    FAST IMAGE PARSING BY GRAPH ADAPTIVE DYNAMIC PROGRAMMING
    9.
    发明申请
    FAST IMAGE PARSING BY GRAPH ADAPTIVE DYNAMIC PROGRAMMING 有权
    通过图形自适应动态编程的快速图像分割

    公开(公告)号:US20110116708A1

    公开(公告)日:2011-05-19

    申请号:US12814449

    申请日:2010-06-12

    CPC classification number: G06K9/469 G06K9/6892

    Abstract: Systems and methods are disclosed to perform image parsing on one or more images by identifying a set of similar regions from each image; assigning one or more region labels to each region and generating multiple hypotheses for region label assignment; and detecting class, location and boundary of each object in the image, wherein object classification, detection and segmentation are performed jointly during image parsing.

    Abstract translation: 公开了系统和方法,以通过从每个图像识别一组相似的区域来对一个或多个图像执行图像解析; 为每个区域分配一个或多个区域标签,并为区域标签分配生成多个假设; 并检测图像中每个对象的类别,位置和边界,其中在图像解析期间共同执行对象分类,检测和分割。

    Systems and methods for generating predictive matrix-variate T models
    10.
    发明授权
    Systems and methods for generating predictive matrix-variate T models 有权
    用于生成预测矩阵变量T模型的系统和方法

    公开(公告)号:US07870083B2

    公开(公告)日:2011-01-11

    申请号:US11869886

    申请日:2007-10-10

    CPC classification number: G06N99/005 G06K9/62

    Abstract: Systems and methods are disclosed to predict one or more missing elements from a partially-observed matrix by receiving one or more user item ratings; generating a model parameterized by matrices U, S, V; applying the model to display an item based on one or more predicted missing elements; and applying the model at run-time and determining UiTSVj.

    Abstract translation: 公开了系统和方法以通过接收一个或多个用户项目评级来从部分观察到的矩阵中预测一个或多个缺失元素; 生成由矩阵U,S,V参数化的模型; 应用所述模型以基于一个或多个预测的缺失元素显示项目; 并在运行时应用模型并确定UiTSVj。

Patent Agency Ranking