摘要:
A fuel assembly is provided with a coolant ascending path for making coolant rise and a water rod having a coolant descending path for conducting the coolant.A ratio of a flow area in a coolant inlet port of the smallest in coolant ascending path 13 on the downstream side than large diameter tube portion 3E to a flow area of the largest in the axial direction of coolant ascending path 13 in large diameter tube portion 3E is set to be 0.2-20%.In the normal operation, the declination degree from the liquid level in the coolant ascending path, corresponding to the coolant flow rate of the liquid level formed in the coolant ascending path can be controlled. Further, at the time of the excess the change speed of the liquid level can also be controlled.
摘要:
The lower end of each of a plurality of fuel rods is supported by a fuel supporting portion of a lower tie plate. The fuel supporting portion includes a plurality of second coolant paths for supplying a coolant from below the fuel supporting portion to a first coolant path defined above the fuel supporting portion and between the fuel rods. The total cross-sectional area of all the second coolant paths is smaller than the cross-sectional area of the first coolant path. A water rod disposed between the fuel rods each includes an ascending tube path having therein a coolant ascending path having a coolant inlet port opening to a region below the fuel supporting portion, for guiding upward the coolant supplied through the coolant inlet port, and a descending tube having therein a coolant descending path having a coolant delivery port opening to said first coolant path, for guiding downward the coolant guided by said coolant ascending path and discharging the coolant through the coolant delivery port to the first coolant path. The descending tube path is so disposed outside the ascending tube path as to define a gap, through which the coolant inside the first coolant path flows, between it and the ascending tube path.
摘要:
A fuel assembly comprises a plurality of fuel rods, tie plates for holding both ends of these fuel rods, and spacers which support these fuel rods. The spacer comprises a plurality of cells into which the fuel rods are inserted respectively, the adjacent cells being joined to each other at axial ends thereof, whereby a space between these cells being held or retained, and a plurality of loop springs held respectively on the cells. Each of the loop springs has a pair of resilient members which are located within the pair of adjacent cells and which urge the fuel rods in a radial direction, and a pair of connections which connect axial ends of the resilient members to each other. Each of the connections have a passage through which coolant flows axially and which is defined by a closed peripheral wall. The closed peripheral wall is not uniform in thickness. The pair of adjacent cells have at axial end portions of peripheral walls openings for accommodating or receiving the connections of the loop spring.
摘要:
The lower end of each of a plurality of fuel rods is supported by a fuel supporting portion of a lower tie plate. The fuel supporting portion includes a plurality of second coolant paths for supplying a coolant from below the fuel supporting portion to a first coolant path defined above the fuel supporting portion and between the fuel rods. The total cross-sectional area of all the second coolant paths is smaller than the cross-sectional area of the first coolant path. A water rod disposed between the fuel rods each includes an ascending tube path having therein a coolant ascending path having a coolant inlet port opening to a region below the fuel supporting portion, for guiding upward the coolant supplied through the coolant inlet port, and a descending tube having therein a coolant descending path having a coolant delivery port opening to said first coolant path, for guiding downward the coolant guided by said coolant ascending path and discharging the coolant through the coolant delivery port to the first coolant path. The descending tube path is so disposed outside the ascending tube path as to define a gap, through which the coolant inside the first coolant path flows, between it and the ascending tube path.
摘要:
A fuel assembly comprises fuel rods arrayed in a square lattice pattern of 10 rows and 10 columns, and three large-diameter water rods arranged along a diagonal line of the fuel assembly in such a region as able to accommodate 10 fuel rods. Partial length fuel rods are arranged in an outermost layer of the fuel rod array at fuel rod setting positions other than corners of the outermost layer. Ordinary fuel rods are arranged in a layer inside the outermost layer and adjacent to the outermost layer at positions adjacent to the partial length fuel rods in the outermost layer.The struction of the fuel assembly enables a reduction in the void coefficient and an improvement in the reactivity control capability. Also, the void coefficient can be reduced without lowering reactivity, and fuel economy is improved.
摘要:
A fuel assembly comprises a plurality of fuel rods which contain nuclear fuel material inside, a lower tie plate which holds the lower end of the fuel rods and has a path inside to lead coolant between the fuel rods, and a channel box which encloses a bundle of the fuel rods. An orifice, in which a plurality of round rods are arranged to cross the coolant flow path, is installed in a through hole at a side wall of the lower tie plate by connecting to the side wall. Orifice coefficient of the orifice becomes large at small flow rate of coolant which supplied to the fuel assembly, and becomes small at large flow rate of coolant. By using the fuel assembly described above, void fraction in a gap region between fuel assemblies can be altered during beginning and end of an operation cycle of the nuclear reactor.
摘要:
A fuel assembly included a plurality of fuel rods, fuel spacers for maintaining gaps between the fuel rods and a channel box. The channel box includes spacer support portions projecting inwardly from an inner surface of the channel box and supporting the fuel spacer in a transverse direction and creep deformation inhibition portions disposed at the lower end portion of the channel box and projecting inwardly. The distance between the spacer support portions disposed to oppose one another in a horizontal direction is smaller than the distance between the creep deformation inhibition portions opposing one another in the horizontal direction.
摘要:
A second fuel rod positioned at each corner of a channel box and second fuel rods adjacent to the former are formed to have a smaller outer diameter than that of ordinary first fuel rods, so that a pitch between the second fuel rods is narrower than a pitch between the first fuel rods. Making the outer diameter of the second fuel rods smaller than that of the first fuel rods reduces the power per unit length of the second fuel rods. The narrower pitch between the second fuel rods than the pitch between the first fuel rods provides two effects. First, a unit lattice cell becomes so small as to avoid an increase in the H/U ratio. Secondly, a new moderator region is formed between the second fuel rods and the first fuel rods adjacent thereto, the moderator region acting to intensify thermal neutron flux around those first fuel rods. These two effects enable a further reduction in the power per unit length of the second fuel rods. As a result, a fuel assembly intended for higher burn-up can be realized by increasing enrichment, while suppressing an increase in the local power peaking factor at corners of the fuel assembly.
摘要:
The present invention provides a zirconium based alloy member which has very small deformation of elongation and bow occurring due to irradiation growth, a method of manufacturing it, and particularly an channel box for an atomic reactor fuel assembly. A zirconium based alloy plate member having a width of not less than 100 mm and a long length, containing not more than 5 wt % Nb and/or not more 5 wt % Sn, the member having (0001) orientation (Fl value) of hexagonal Zr with respect to longitudinal direction ranging from 0.20 to 0.35, the difference in Fl between the middle and the end being not more than the value calculated from (0.0935.times.Fl-0.00585) and an amount of bow at neutron irradiation of 35 GWd/t which bow occurs in the channel box for a reactor being not more than 2.16 mm.
摘要翻译:本发明提供一种锆基合金构件,其由于照射生长而具有非常小的伸长变形和弓形,其制造方法,特别是用于原子反应堆燃料组件的通道箱。 一种宽度不小于100mm,长度不大于5重量%的Nb和/或不多于5重量%Sn的锆基合金板构件,具有(0001)取向(F1值)为 相对于纵向为0.20〜0.35的六方晶相,中间和末端之间的F1的差不大于由(0.0935xFl-0.00585)计算的值,中子照射下的弓的量为35GWd / t 在弯道出现弯道不大于2.16mm的反应堆。
摘要:
A fuel assembly, where crystallographic orientations of a channel box are brought into a random distribution; and cladding tubes, spacers and a channel box are made from highly corrosion-resistant, Fe--Ni, zirconium-based alloy, hardened in the (.alpha.+.beta.) phase or .beta.-phase temperature region, has an average discharge burnup level of 50 to 550 GWd/t.